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SECTION 1

INTRODUCTION AND OVERVIEW

An important quality attribute of a computer system

is the degree to which it can be depended upon to perform TS

its intended function in the specified environment.
ff Evaluation and prediction of this attribute has
;i concerned computer designers and users from the early

- days of their evolution. Until the late sixties, the

attention was almost solely on the performance of hard-

ware became the center of attention due to a continuing -

ware aspects of the system. 1In the early seventies, soft- }ﬂk7ﬂ
R

increase in the ratio of software to hardware costs, in ]
]

both the production and the operational phases.

The performance of a software system is dependent ‘faa_
on the tools and methodologies used during its develop-

- . ,
= ment, and an important measure of performance is the

= nature and frequency of software errors. -

This report 1is primarily concerned with the develop- |
ment of stochastic models for describing the software error
-~ occurrence phenomenoa and determining software reliability.
A description of software errors and their sources is

given in Section 1.1 and an error classification scheme

- 1-1
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is described in Section 1.2. The notion of software
reliability is discussed in Section 1.3. Current
suggested approaches for enhancing software reliability
are given in Section 1l.4. A description of software
reliability models reported in the literature is given
in Section 1.5.

A non-homogeneous Poisson process (NHPP) model
based on an exponentially decaying error occurrence
rate is developed in Section 2. Many useful software
performance measures are developed and several software
failure data sets are analyzed to show the applicability
and usefulness of this model.

In Section 3, another NHPP model is proposed which
can be used to model both the increasing and the decreas-
ing failure rates during the software integration testing
phase.

The problem of when to stop testing and start using
software is discussed in Section 4. Various useful
scenarios are considered and optimum release time poli-
cies are developed. The results are illustrated via
numerical examples.

A related problem of modelling the total hardware-

software system is addressed in Appendix A. This task
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was not a part of the research work under the reference

contract and the results are reported here as they are S
considered useful for people interested in software re- e E

liability modelling.
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1.1 SOFTWARE ERRORS AND THEIR SOURCES

Lot s i 4

Software (also called program) is essentially an
instrument for transforming a discrete set of inputs e
into a discrete set of outputs (see Figure 1.1). It
comprises of a set of coded statements whose function 'Fﬂs;

may basically be one of the following:

1. Evaluate an expression and store the result
in a temporary or permanent location.

2. Decide which statement to execute next.

3. Perform input/output operations.

Since, to a large extent software is produced by humans,

the finished software product is often imperfect. It is

M)
o't

imperfect in the sense that a discrepancy exists between

lr'(

v
-

'.ChP{1IF': S OMPEN
Sl b Gte
. )y . i LI .. . .

what the software can do versus what the user or the com-
puting enyironment wants it to do, The ccmputing en-
vironment refers to the vhysical machine, operating systenm,

compiler and translators, utilities, etc. These dis-

20 crepancies are what we call software errors (see Figure
E; 1.2). Basically, the software errors can be attributed
E; to the following:

[: 1. Ignorance of the user requirements;

i? 2. Ignorance of the rules of the computing

#; environment; and

9
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3. Poor communication of software requirements
between the user and the programmer or poor
documentation of the software by the programmer.

The fact of the matter is even if we know that soft-
ware contains errors, we may not know with certainty the
exact identity of these errors.

Currently, there are two major paths one can follow

to expose software errors:

1. Program proving, and

2. Program testing.

Program proving is more formal and mathematical while
program testing is more practical and still remains to
be heuristic in its approach. The approach in program
proving is the construction of a finite sequence of logi-
cal statements ending in the stétement (usually the output
specification statement) to be proved. Each of the logi-
cal statements is an axiom or is a statement derived from
earlier statements by the application of an inference
rule. Program proving making use of inference rules is
known as the Inductive Assertion Method. This method was
mainly popularized by Floyd, Hoare, Dijkstra and recently
Reynolds. Other work on program proving is the work on

the Symbolic Execution Method. This method is the basis

of some automatic program verifiers. Despite the formalism

B

—




and mathematical exactness of program proving, it is
still an imperfect tool for verifying program correct-
ness. Gerhart and Yelowitz [GER 76] showed several
programs which were proven to be correct but still con-
tained errors. The errors were due to failures

in defining what exactly to prove and were not failures
of the mechanics of the proof itself.

Program testing is the symbolic or physical execu-
tion of a set of test cases with the intent of exposing
embedded errors (if any) in the program. Like program
proving, program testing remains an imperfect tool for
verifying program correctness. A given testing strategy
is good for exposing certain kinds .of errors but not all
possible kinds of errors in a program. An advantage of
testing is that it provides accurate information about a
program's actual behavior in its actual computing environ-
ment; proving is limited to conclusions about the program's
behavior in a postulated environment. .

Neither proving nor testing can, in practice, guaran-
tee complete confidence on the correctness of programs.
Each has its pluses and minuses. They should not be
viewed as competing tools. They are,in fact, complementary
methods for decreasing the likelihood of program failure

[GoO 77].

1-8

1}
=

1.
T .o
o 2
P YR bbbl




7o T "“1
3 O
. S
$ o
h
- o]
R — o
.3
- S
F 1.2 SOFTWARE ERROR CLASSIFICATION T
g A systematic study of software errors in a progran o o
- ——
requires knowing what specifically these errors are and L
.
knowing which tool(s) to use to expose particular types ]
of software errors. Software errors can be grouped as -]
lp-um..l.:".:
syntax, semantic, runtime, specification and performance N

errors.
1.2.1 Syntax Errors X1 -

These errors are due to discrepancies between the .

program code and the syntax rules governing the parser
or lexical analyzer of a program translator, These are .

the easiest errors to detect, They can be detected by

visual inspection of the code or can be detected mechani-~
‘ cally during the program compilation process. Experienced C

programmers rarely commit syntax errors.

1.2.2 Semantic Errors

a These errors are due to discrepancies between the ;_ -
program code and what the semantic analyzer of the computing ]

' environment accepts. Among the popular kinds of semantic ‘ :iJi

;? errors are typechecking errors and implementation restric- ;.u tf
tion errors. Again, they may be detected by the semantic

3 analyzer of a program translator or by visual inspection.

1-9
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Syntax and semantic errors are detected during the
compilation stage of a program. A program having syntax
and/or semantic errors cannot be executed. Syntax and
semantic errors are mainly due to the ignorance/negligence
on the part of the programmer about the restrictions and

limitations of the language (s)he is using.

1.2.3 Runtime Errors

As the name implies, runtime errors occur during
the actural running of a program. They may be further

classified into three categories:

Domain errors

A domain error occurs whenever the value of a
program variable exceeds its declared range or exceeds
the physical limits of the hardware representing the
variable. The declared range of a variable is done im-
plicitly or explicitly. FORTRAN, for example, assigns
types to variables based on the variable name or based
on a declaration statement. PASCAL requires all variables
to be explicitly declared in a declaration statement.
PASCAL has facilities to declare ranges by enumeration
and/or subsets of numeric domains.

Some program translators produce runtime code for
checking certain types of domain errors. Some have built-
in recovery features for domain errors (e.g. PL/1, COBOL)
and others (e.g. FORTRAN) simply abort execution upon
the occurrence of a domain error. Certain compilers, like

1-10
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PASCAL, automatically check for values outside a declared ”%‘]H
range.

Domain errors are a serious matter because

a) program execution is aborted, and/or '”’i;

b) program results are incorrect.
Execution abortion may be fatal especially in real-time i
systems. Despite their seriousness, domain errors have --Miﬁ
never been formally and extensively studied in the litera- 1fﬂvé
ture. This is because detection of domain errors can be  .' )
very difficult. They require exact specification of the .
ranges of the input variables. Also, the test values
required to expose these errors may occur at the input

domain's boundary or inside the input domain itself. ety

Computational errors

Computational errors, sometimes known as logic errors, SR

.1
result whenever the program results in an incorrect output. - :;
The incorrect output may be due to a wrong formula, an ]
- .- T -ﬁ
¥ incorrect control flow, assignment to a wrong variable, . -
o S
. incorrect parameter passing, etc. .- p}
s It is not possible to generate runtime code to de- q
f‘ tect computational errors during program execution. This ;3533
-
p. is because computational errors are really discrepancies - 1
between the program's output and the program's specifica- |

- tions.
3 .
= - -
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Computational errors due to incorrect program con-
structs and statements may be detected by any of the
structure dependent or structure independent testing
techniques. However, none of these tools can guarantee
total absence of these types of computational errors in
a program. Computational errors due to missing program
constructs and statements may be detected by any of the
structure independent testing techniques. Again, none
of these tools can guarantee total absence of computational

errors due to missing paths.

Non-Termination errors

Non-termination error is simply the failure of a
program to terminate in finite time without outside inter-
vention. The most common cause of non-termination errors
is when the program runs into an infinite loop. MNon-
termination can also occur if a set of concurrent programs
falls into a dead lock.

Infinite loops are detected by simply executing
each of the looos in a program. FHowever, this strategy
may not guarantee total absence of infinite loops. Some
infinite loops may only occur if certain program variables
achieve certain values. Program proving may also be used
on certain programs to expose infinite loops. The problem
of program non-termination in general is still an unsolved

problem.

1-12
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1.2.4 Specification Errors ;“*ij
:S Specification errors result whenever there exists a ,,' -
discrepancy between the statement of specifications and
the statement of user requirements. A requirements error
exists whenever there is a discrepancy between the state-

ment of user requirements and the real user requirements.

Presently, detection of specification errors such as;
1. Incomplete specifications,
2. Inconsistent specifications, and
3. Ambiguous specifications,
remains an informal process. This is mainly due to the
nonexistence of a specification language powerful enough
to translate the user requirements into clear, complete

and consistent terms.

A testing tool to detect specification errors is »?iﬁ

yet to be developed. _'i‘

s

1.2.5 Performance Errors : '?

Performance errors exist whenever a discrepancy f‘

;‘ exists between the actual performance (efficiency) of the ®

:i programs and its desired or specified performance. Program - _>f1

Fi performance may be measured in a number of ways: é

i 1. Response time ,;;

- 2. Elapsed time T

E 3. Memory space usage \i

E# 4, WVorking set requirement, etc. ‘;

3 B
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The actual measurement of the above measures of ‘7*'4
program performance can be a very difficult process.
Program complexity theory tries to estimate bounds on .
\; the running time of certain proqgram algorithms. Statis- ;“;'*
tical analysis and simulation can also be employed to t':ij
L estimate the above performance variables. However, use E
of these tools can be very expensive and time consuming. ;*;f

A performance testing tool that is economical (time-
wise and costwise) to use is yet to be developed.

“! The most expensive kind of software errors to elimi- ‘*Anﬁ
nate are those which are not discovered until late in the o

software development, such as when the software becomes

operatiomnal. These are known as persistent software errors. i'\i;
Glass [GLA8l] reported that persistent software errors are
mostly due to the failure of the problem solution (i.e. the
proagram) to match the complexity of the problem to be ;‘36:
solved (i.e. the user requirements). Examples of such }
errors are computational errors due to missinag or insuffi-

'é cient predicates and failure to reset a variable to some . "
baseline value after its use in a functional logic segment. S
The solution to this software problem is beyond the current

o state-of-the-art. e
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1.3 SOFTWARE RELIABILITY

There are a number of conflicting views as to what
software reliability really is and how it should be quanti-
fied. The conflict arises because of the disagreement in
the basic definition of the term "software reliability".
Software reliability in the view of some people, especially
the computer science purists, should be closely tied to the
correctness of software. They argue that an incorrect
software (i.e., a software still containing errors) is
doomed to fail sooner or later and thus its reliability
should be zero (0). Once the software has been freed of
all errors, then its reliability becomes one (l1). On the

other hand, software reliability, as viewed by many engi-

neers, statisticians, and practitioners, should be closely tied

to the concept of "probabilistic reliability". These
groups of people argue that many programs used in the
real world are known to still contain errors and yet
they are executed day after day without occurraences of
failures. Software reliability, they believe, should
be viewed as the probability that a software system will
operate without a failure for a specified (mission) time.
One way to resolve this conflict is to look back
at the original problem in the real world and ask our-
selves the question: "Why do we need to know software

reliability?"

1-15
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The original real world problem, in very simple terms,
is as follows:

Develop software that will satisfy the user's require-
ments in the most efficient (in both time and money sense)
way possible.

The solution to this problem turns out to be very
difficult basically because of the following facts;

1. Real world software is large and complex.

2, Users are not always 100 percent certain

about their requirements,

3. Resources (time and money) allocated for soft-

ware development are always limited.
Even if we know that we only need: say, 2000 test cases to run
for exposure all possible embedded errors in a software, chances
are that, in the real world, we may not have enough time
and money to perform this exhaustive test. As more and
more errQors are uncovered by our testing or correctness
verification process, the additional cost of exposing the
other remaining errors rises very fast. Thus, beyond
a point it is almost practically useless to continue

testing to achieve 100 percent correctness. This explains

the reason why most all software systems in public and

private use still have embedded errors.
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If we adopt the point of view of a computer science

purist, then almost all software systems in use (including

those that are accepted as very reliable and useful by their
users) have zero reliability. Since everything now has

zero reliability, the value or usefulness of the software
reliability, concept is lost.

The reason why peonle introduced the concent of soft-
ware reliability (or hardware reliability for that matter)
is to have a useful measure that may help us in dealing
with the original real world software (hardware) oroblem.
This measure is useful in planning and controlling addition-
al resources (time and money) for enhancing the reliability
of a software. It is also a useful measure for giving the
user confidence about the software quality.

Should we, then, adopt the hardware based concept
of software reliability? One answer to this question at
this point in time is yes, but with extreme care. We

should be careful because there are inherent differences

between software and hardware. Hardware exhibits mixtures

of decreasing and increasing failure rates. The decreasing

failure rate is due to the fact that as use time on the =
hardware system accumulates, more and more errors (most . i
probably design errors) are encountered and fixed. The g
increasing failure rate is due primarily to hardware component ;~“:;
-

1-17 .
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wearout. There is no such thing as wearout in software. —f~.ﬁ

It is true that software may become obsolete because of o d

changes in the user and computing environment but once we : .%

modify software to reflect these changes, then we are no -~ g

longer talking of the same software but an enhanced or

modified version. Like hardware, software exhibits a de-

creasing failure rate as the usage time on the system -»w.i

accumulates and errors (due to design and coding) are fixed.

Thus, a hardware-type approach to software reliability should

be done only in appropriate environments. -3WQH
Suppose we declare that the reliability of a given

software is 0.95. What does this number exactly mean?

Following the probabilistic point of view, this may mean ;iﬂiﬂ

any one of the following:

1. If we execute the software several times, 95 ;5;;&
percent of the time it will give correct ;: ;i
results. :

2. We are 95 percent confident that the software ; 27&

3

will give correct results when executed. S

’ v v vy

The first interpretation is the so~called fregquency inter- »

pretation and the second is the so-called subjective in- 1?-‘J

terpretation. Littlewood's contention [LIT80] is that in }f'.}

- -

the absence of a "scientific" verifiable meaning for the ;
number 0.95, the only reasonable interpretation is the sub-

jective interpretation. L e
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The only problem we see with this number is its possible

inconsistency. A software may have been declared 95 percent n"; ?3
reliable by the developer but may have a different per- f :;{?
ceived reliability by the user and probably a different f g ﬁ
percieved reliability by another user. A very simple _ff'j
example will illustrate this point. Suppose a software 'i'“i?
is composed of 100 modules. Because of practical considera- ' :. i

N

tions, the software developer stops testing after 90 modules.
He then declares the reliability of the system as 90 percent.
A user buys the system and happens to use in his particular
application some modules (or maybe program paths) which
have not been tested. As a result, 50 percent of the time,
the user gets incorrect results. His perceived reliability
of the system is therefore 50 percent. Another user might R
use a different mixture of untested modules (program paths) |
and might get a different number for the reliability measure.
The basic question is: What is the true reliability of LT
the software? .
The only way to resolve this question, we feel, is

to further qualify or condition our software reliability -

measure. Ultimately, what is more important is that the

user gets his correct results from the software. Thus,

%

¢

r’ that user should be more concerned about a reliability -

:j measure conditioned with respect to his requirements. The

E; software developer should be concerned with a reliability

- measure conditioned with respect to the intended specifica- -
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tions of the system. We should remember that the purpose

of the reliability measure is to help in planning and con-
trolling the production of software and nothing more. We
may pool all the users into one big user (for example, user
of an operating system software) and come up with an average
reliability measure. Still, this number may not match the
developer's measured reliability. If we let R[S|r] mean

the reliability of the software system S with respect to
requirements r, then in general, we have:

R[S|user requirements] # R[S|developer requirements]

1-20




i 1.4 APPROACHES FOR ENHANCING SOFTWARE RELIABILITY -
- .Y

Consider the concept of software reliability based
on the following definition [MYE76]: ,

Software reliability is the probability that the T

software will execute for a particular period of o

time without a failure, weighted by the cost to

the user of each failure encountered.

This definition is not necessarily based on the

actual number of errors residing within the software system

but is based on the impact that the errors have on the users.
For example, a single error in a space shuttle control soft-
ware is much more important than several errors in a matrix
inversion software system which cause only "trivial"
failures. Certainly, a software system which does not
contain a serious error but has many trivial errors would
generally be considered much more reliable than a system
which does not contain the trivial errors but contains

the single serious error.

The reliability of a software system is generally

expected to grow as it evolves from the design stage to

< ,‘
H . ]

' ‘ e -
7 U N

<4

the coding stage and testing stages and down to the opera- T
tional and maintenance stage. Modern software engineering

practice advocates that testing should be performed as -

L
early as the design stage. Software errors detected in T 7T

the design stage are easier and less expensive to remove

P
b
,
b-
b
H
-
[
3

than those detected during the testing or operational .i

oy WY
C -.'
q
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stage. We also know that modern software design methodolo-
gies help in the likelihood of not committing errors in the
design stage. Redundant programming, that is, implementing
a software in different ways, is sometimes used to enhance
software reliability. Fault tolerance programming is
another popular technique. However, testing still remains
the most commonly used approach to enhancing software re-
liability.

Testing for the presence of errors is usually done

in stages [CHA78]:

1. First stage is the testing done at the module
level by the implementing programmer.

2. Modules are then integrated forming a subsystem
or the whole system is tested. The system is then
tested. This is also known as alpha testing.

3. The software is then given to several "friendly

users" who are willing to use the software in an

operational environment and the problems encountered

with the software are reported. This is known as
beta testing.

4, Finally, software is released to all users and
corrections are issued against it as problems are
reported by the users.

This overall testing process coupled with the design

testing process would, hopefully, result in an enhanced
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reliability of the software system. Can the reliability

of the software decrease as a result of the software
correction (debugging) process? The answer is yes. This
occurs when additional errors are accidentally injected
into the system while removing some other errors.

Hopefully, with the use of bettér design methodologies,
better documentation techniques, better programming languages,
better testing strategies and better software management
techniques, the likelihood of software reliability decreasing
as the system evolves from the design to the operational

stage will become less.
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1.5 SOFTWARE RELIABILITY MODELS §

9

1

Many studies have been undertaken during the last M B

decade to analyze and study software failure data with

the objective of finding ways that will lead to improved

software performance. Such studies can be classified 2o

into one (or both) of two categories. 1In the first cate- 1
gory, the emphasis is on the analysis of software failure

data collected from small or large projects during develop- -
ment and/or operational phases, Studies in the second
category are primarily aimed at the development of analyti-
cal models which are then used to obtain the reliability
and other quantitative measures of software performance.
The analytical modelling work can then be classi-
fied into the following three major categories. The first
one emphasizes the stochastic nature of software failures,
while the second and the third use combinatorial analysis to

provide measures of software reliability,

1. Failure Rate Based Models.
2. Combinatorial or Error-Seeding Models.

3. Input Domain Based Models. -
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Failure (Hazard) Rate Based Models: The times

between indigenous crrors or the number of indige-
nous errors observed during testing are used to
estimate the shape of the hypothesized hazard
function, From the estimated hazard function,

one can estimate the number of errors remaining

in the software; the mean-time-to-failure (MITF)
or the reliability of the software,

Combinatorial or Error Seeding Models: A

known number of errors are seeded (planted) in
the program, After testing, the number of ex-
posed seeded and indigenous errors are counted.
Using combinatorics and maximum likelihood esti-
mation, estimates of the number of

indigenous errors in the program or the relia-

bility of the software. car. be estimated.

Input Domain Based Models: The basic approach

here is to generate a set of test cases from an
input (operational) distribution. Because of the
difficulty in estimating the input distribution,
the various models in this group partition the
input domain into a set of equivalence classes. An
equivalence class is usually associated with a pro-
gram path. The reliability measure is calculated
from the observed failures after execution (sym-

bolic or physical) of the sampled test cases.
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1.5.1 Failure Rate Based Models

Failure rate based models can be further classified S {?
as shown in Table 1l.1l. _%;'J
oo

The failure-rate (also known as hazard rate) function

z(t) is defined as the conditional probability that an error

is exposed in the interval t to t+at, given that the error
did not occur prior to time t [MYE76). The reliability
function R(t) is the probability that no errors will occur
from time zero to time t., Reliability theory tells us that
z(t) and R(t) are related in the following form:

z(t) = [-dR(t)/dt]/R(t)

or t

R(t) = exp(- I z(x)dx)
0

Also, mean-time-to-failute (MTTF) = 1/z(t).

Estimation of reliability, once the failure rate
function z(t) is known is thus straightforward. The
failure rate based models given in Table 1.1 basically
differ in their assumption on the failure rate function

z(t). Table 1.2 below displays these differences;




TABLE 1.1 TABLE

Gl R e i S i M) .
Rt A b

OF FAILURE-RATED BASED SOFTWARE

RELIABILITY MODELS

Classical

Bayesian

Error:- Count
Based Failure
Rate Models

De-Eutrophication Process
Model of Jelinski-Moranda
[JEL72]

Linear Function Testing
Time Model of Schick and
Wolverton [SCH78]

Parabolic Function Testing
Time Model of Schick and
Wolverton [SCH78]

Shooman Model [SHO72]

Shooman-Natarajan Model
[DUN82]

Execution Time Model of
Musa [MUS75]

Littlewood Model
[LIT80)

Goel-Okumoto
Imperfect Debugging]
Model [GOE79 ]

Non-Error
Count Based
Failure Rate
Models

Non-Homogeneous Poisson
Process Model of Goel §
Okumoto [GOE79]

Geometric De-Eutrophica-
tion Process Model of
Moranda [MOR75]

Geometric Poisson Process
Model of Moranda [MOR75]

Wagoner Model [DUN82)

Littlewood and
Verrall Model
[LIT73]

Thompson § Chelson
Model [DUN82]
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TABLE 1.2 SUMMARY OF FAILURE-RATE BASED MODFELS

Model

De-Eutrophication
Process Model

Schick-Wolverton
Linear Failure Rate
Model

Schick-Wolverton
Parabolic Failure-
Rate Model

Shooman Mgdel

Shooman-Natarajan
Model

Assumption on z(t)

The software failure occurrence rate at
any time t is assumed proportional to
the number of errors remaining in the
software, i.e., for the time interval
between (i-1)st and ith failure, we
have Z(X.) = ¢[N- (i-1))]. N is the
initial &rror content,

Failure rate is assumed proportional
to number of remaining errors in soft-
ware and test time, For ith interval,
Z(X;) = [N - (i-1)]X;.

Failure rate is assumed proportional to
residual errors and a parabolic function
of test time, For ith interval, Z(x;) =

¢[N - (i-l)](~axi‘+bxi-+c) a,b,c >0

T
Z(t) = K[ET/IT - I p(x)dx] where:
0.
K : proportionality constant
ET: total # errors
IT: total # instructions (object code)

T : debugging time
p(x): number of errors/total # instruc-
tion s/x debugging time.
T
J p(x)dx: total # of errors per IT
0

removed during time units
of debugging time.

Z(t) = Ker(t) where:

€_: number of remaining software
faults.

K : constant of proportionality
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Execution Time I. 2z = . . l ;:;
Model of Musa (t) = KfNg - Kfn(t) where: S
K error exposure ratio g
£ linear execution frequency of . .=
program T
NO: initial error content o
T

e e

-

: CPU time utilized in operating °
the program .._..,'..'? o
n(r): net number of errors .
corrected during T, B

I1 If dn(t)/dt=error exposure rate, .- ]
then Z(t) = KfNjexp[-Kfr] ]

" Non-Homogeneous Assumes that the error detection rate
, Poisson Process A(t) is time dependent and is given by:
ﬁ (NHPP) Model of A(t) = abexp[-bt] where:

Goel Okumoto

) & a: expected number of errors to ERE

g ] be eventually detected g
b. error detection rate per error

Geometric De- Assume that the steps representing the e
Eutrophication decrease in failurc rate between BORN
Process Model of adjacent failure time are geometri- ;1@‘1
!I Moranda cally varying. i-1 . p
= Z(X;) = DK where: SR

D: initial error detection rate
DK: error detection rate after the
. occurrence of the 1lst error

- 1

. ' .

Dk3"1: error detection rate zfter the R

occurrence of the ith error. RN

Geometric Poisson A superposition of a geometric De- ‘rfiq

Process Model of Eutrophication process and a Poisson o

Moranda process with parameter 6, S

Z2(X;) =Dk "1+ B

. . A ,tiA-1 . :
Wagoner (Weibull) z(t) = = (=) where: S

. Model 9.9 B2
: 6 : scale parameter .t

A : parameter to squeeze or stretch R
the shape of the distribution .
t + CPU time units

-5
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if Goel-Okumoto The form of Z(t) is not obvious: ;;#.«
-G‘ Imperfect Debugging however, the rcliability function 4
1Y Model betwecen the (k-1)st and Kth failure is; o
o Kol ge1, oK-j-1. "
o Ry (x) = _ZO( 3P Qlexpl-(N-K+j+1)]1x
L-':: J=
o where: i »
E! P: Prob {of successful correction o

—— of a defect}

i Q: Prob {of imperfect debugging}= 1-P : ]

- A: Parameter of the exponential A
distributions governing the time
between failures

n. N: Estimated initial number of defects.
]

Thompson § Chelson z(t) = X but A is treated as a random

Model variablg with a gamma density function
. T, (AT,) © :

0 o exp[- T.] )
e - Tk, + 17 “PL To
where:

KO: observed failures
To: testing time for K,

-l

Ko and T, essentially represent
pregious testing experience,

-~

& i = i ed as a random
. Littlewood and z(t) = A but ) is treat _

% Verrall Model variable distributed as Gamma with

y shape parameter o and scale parameter
- ¥(i), an increasing function of i.
Ef: Littlewood Model Z(Xi)= Aj and A is g%itributed as
b, gamma ((N-i+l)a, B+ tj), where: S
& N-i+1: number of errors remaining s
3 when (i-1) failures have :
[ occurred. )

8 t.: execution time from (g-l)st
. J failure to the jth failure. o
f‘ a,B: parameters of gamma distribution. g
A
F; @
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As noted above a number of assumptions are made in
the development of failure-rate models. A discussion of
these assumptions is provided in the following paragraphs
to point out the dangers in the use of these models when
the assumptions are not satisfied. It should, however, be
noted that some models could be robust to departures from
many of these assumptions and can be used for reliability
assessment purposes.

1. All the models described above assume that any error
detected is immediately corrected. The correction
process does not alter the program. All corrections
remove the detected error (except the IDM model) and
do not result in the introduction of new errors. It
is not hard to accept that correction of a detected
error in a program may result in new errors in the
program. Goel and Okumoto [GOE79] tried to address
the second limitation above by formulating the Im-
perfect Debugging Method (IDM). IDM assumes
that the number of errors in the system at time t is
governed by a Markov process. Time between transitions
is exponentially distributed with rates dependent on
the current error content of the program. The state
transitions are guverned by the probability of imperfect
debugging. No one has yet addressed the problem in which
the debugging process introduces new errors into the

software.
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Models such as those by Jelinski and Moranda, Musa,
and Shooman assume that the software failure rate

is a constant multiple of the number of remaining
errors. This is the same as saying that each error
in a given time interval (between failures) has the
same chance of being detected. This, obviously, is
not always true since errors that happen to reside
in a portion of the code that is frequently executed
by the user (or tested by the user) have a higher
probability of being detected. Errors which reside
in the unreachable (or never used) portion of the
code will obviously have a lower (or zero) probability
of being detected. Moranda tried to address this
problem by reformulating the De-Eutrophication model
into the Geometric De-Eutrophication Model and later
to the Geometric Poisson Model. In these variations,
the failure rate between adjacent failure intervals
is geometrically varying.

The NHPP model by Goel and Okumoto also tried to
alleviate these problems (i.e. problems with the con-
stant failure rate models) by postulating a time de-
pendent error detection rate model. Littlewood is more
ambitious in trying to address this problem. He postu-
lated a model which assumes that each remaining error
in the program has a different rate of occurrence. The
failure rate of the overall program is then just the sum

of the individual error's rate of occurrence.
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3. The Schick-Wolverton models happen to model a process
where there is an increasing failure rate between fail-
ures. This may be a ridiculous assumption if we argue
that software does not wear out. But there can be
cases where the software failure rate might in fact in-
crease and this may be attributed to the increased
intensity of testing. This phenomenon is usually ob-
served during the early stages of the software develop-
ment cycle.

4. Basing the time between failures in terms of execution
(CPU) time, as was assumed by Musa, Littlewood and
Wagoner, may sometimes be unrealistic. An increase ip
accumulated time between two adjacent failures may not

necessarily mean that the software has less and less

number of errors or, putting it equivalently, that the
software's reliability is improving. A very simple

- example will illustrate this point. Consider a program
F! containing only a single error. The same copy of the

E program is given to two debuggers. One debugger spends
;‘ a lot of time running and re-running the program (which
{ can be very tempting to do on on-line and timesharing
(g systems) trying to uncover the error. The second de-
{d bugger, on the other hand, spends a lot of time analyzing
the program before even attempting to make a test run.
Suppose both debuggers are successful in finding the

;a error. What is the resulting reliability of the software?
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Execution time theory says that since the CPU time

between failures of the first software is larger than

that of the second software, then the first software ' !ﬁ
is more reliable. Of course we know that this is not
true since both software have the same reliability.

- -

Another example where execution time may be misleading
is when a selected subset of the program is executed
repeatedly. While the execution time is accumulating
the test coverage is not and this will lead to an
incorrect assessment of reliability. What is the
most appropriate time unit to use for interfailure

times is still a controversal topic.

What about the assumption of independence of inter-
failure times? 1Is this a realistic assumption? Chances
are it is not. The testing process that is used to un-
cover errors is usually not a random process. The time
to the next failure may very well depend on the nature
and time to failure of the previous error. If the pre-
vious error was a very critical one, then we might decide

to intensify the testing process and look for more critical

errors. This intensification in the testing process may T
mean a shorter time to the next failure than what might

have happened if the testing intensity were maintained at

normal levels. )
6. Most of the models require time between failure data to
estimate reliability. There can be cases when the mean - ,‘:
1-34
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time between failure is infinite; as such, these

models become useless. The mean time between failures

can be infinite if the user of the software has re-
quirements that would only traverse the error free

paths of the program.

Basing the reliability of the software on the remaining

number of errors can also sometimes be ridiculous. A
user does not really care whether a software has a
certain number of remaining errors. As long as all
his requirements are met correctly by the software,
then as far as the user is concerned, the software is
100 percent reliable. Littlewood [LIT80] argued that
a program with two bugs in little exercised portions
of the code can be more reliable than a program with
only one but frequently encountered bug.

All the models implicitly assume that the testing
process, which generated the estimate for the failure
rate, will be the same as the operating environment.
This again is not true. A reliability measure
conditioned on the user requirements rather than a
simple unconditioned software reliability measure
would be more realistic.

Some models assume that software reliability is time-
dependent. Most software fail not because of the
length of time it has been in use but fail because

of the nature of the input to which it is subjected.

Some software like real time control software or
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operating systems show an illusion of failing with
time-of-use because they are used almost continuously.
In those environments, the time-dependence assumption
may be valid.

Perhaps the most fundamental assumption is the treat-
ment of the software as a black box. At least some
software reliability models should take into consider-
ation software characteristics and the characteristics
of the software development process in addition to

the failure times and the number of remaining errors.

1-36

|
.




1.5.2 ' combinatorial or Error-Seeding Models

A number of combinatorial models have been proposed
but the most popular (and most basic) is Mill's Hypergeo-
metric Model. This modelrrequires that a number of known
errors be randomly inserted (seeded) in the program to be
tested. The program is then tested for some amount of
time. The number of original indigenous errors can be
estimated from the numbers of indigenous and seeded errors
uncovered during the test by using the hypergeometric dis-
tribution.

Let

n, = number of seeded errors

K = number of seeded errors detected during testing
N = total number of indigenous errors
r = number of indigenous errors detected during testing

We then have

A
P[K seeded errors in r detected _ ‘k’‘r-k
indigenous errors] - (N) -

' r

- nr
MLE for N = S

A variant of the above model is the so-called Binomial

model, Let q; = Prob [errors] on each run i, then we have

Prob[x errors in y trials] = (i)q? )(1-qi)y.

The scrious assumption of the above models is that
the indigenous and seeded errors are assumed to have the
same probability of being detected. 1In other words, the

seeded errors must be of the same type and should have
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the same distribution as the indigenous errors. This,

o

of course, is difficult to meet in real-world conditions.
A suggestion is given in [HO78] to overcome this )

problem. In this improved approach, two teams are going

to test the program indepcndently. "Supposc team 1 detccts

n errors and team 2 detects r errors, and thc number

of errors common to both teams is K. We can then vicw

the errors detectcd by one team, say team 1, as seeded 1

errors, and estimate the total number of indigenous errors

N to be nr/K, Note, however, that simple errors may be

discovered first and the distribution of errors detected

may not resemble the actual distribution of errors; so

PR )

that the estimates may be biased.
The advantage that is obvious with these combinatorial

models over the failure-rate based models is that they are

based on less and much simpler assumptions.

1.5.3 Input Domain Based Models

A good representative set of models in this group in-

cludes the Nelson (TRW) model [BRO75], Ho Model [HO78], )

and the Bastani model [BAS80]).

Nelson (TRW)Model

The reliability of the software is measured by exposing
(running) the software with a sample of n inputs. The n

inputs are randomly chosen from the input domain set

Py

E = (Ei: i = 1,N) where each Ei is the set of data values -
needed to make a run. The random sampling of n inputs is
done according to a probability distribution P.3 the set

(Pi: i = 1,N) is the "operational profilc" or simply user -

PPy
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input distribution. Ifne is the number of inputs that
resulted in execution failure, then an unbiased cstimate
for the software reliability ﬁ is 1- (ne/n). However,
it may be the case that the test set used during the
verification phase may not be representative of the ex-
pected operational usage. Brown and Lipow [BRO75] sug-

gested an alternative formula for R which is

A Y5
R=1- P(E.
izl m P (Ey)

J
where
nj = number of runs sampled from input subdomain Ej
fj = number of failures observed out of n; runs.

The main difference between Nelson's R and Brown and
Lipow's R is that the former explicitly incorporates the
usage distribution or the test case distribution while the
latter implicitly assumes that the accomplished testing
is representative of the expected usage distribution.
Both models assume prior knowledge of the operational
usage distribution. This may not be easy to do for some
real-world software. Another criticism of this approach

is the use of random testing.

Ho Model

Reliability estimation in this model proceeds by
first generating the symbolic execution tree of the pro-
gram. This tree characterizes all the execution paths
and their associated outputs in the program. The nodes
represent statements whilc the edges represcnt the state

vector resulting from symbolic execution along the path
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from the root statement to the current statement. A
procedure for generating the symbolic execution tree
is given in [H078]:
I. The first statement is the root of the tree,.
IT. 1If a leaf is not a STOP or RETURN statement,
symbolically execute the statement corresponding
to the node. If the current statement is a
conditional statement, the feasibility of the
branches is examined. New nodes are created
for statements which are successors of the
current statement. Edges, labelled with state
vectors are joined between the current node
and the new node(s).

III. Go to II.

The generated execution paths from the symbolic exe-
cution tree are proven correct or are sample tested. For
a given path, say path i, if it is proven correct, then
the path reliability R, = 1, If path i cannot be proven
correct, a random sample of N test cases is generated
that will execute path i. If no failures result from
the execution of the N test cases, then Ri is bounded
below by 1 - Ci where Ci is the confidence interval of
path i, The length of Ci is a function of our given

confidence coefficient a. On the other hand, if n
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failures are observed and the errors not corrected, then
. N - n
Ry 1s bounded below by —x— -~ C;. If the observed n
failures are corrected, then the sample testing is re-
peated for path i,
Finally, the software reliability estimate R is

calculated from

where:
£, = weighting factor or path i which corre-
sponds to the execution frequency of path i.
m = total number of execution paths.
One difficulty with applying this approach is the
large number of paths that may exist for real world soft-

ware,

Bastani‘Model

This input domain based model estimates the reliability

R from the relation

where:

Vo = the total error size remaining in the program.
T

Vc can be determincd by testing the program and locating and
r

estimating the size of errors found [BAS80). An error
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has a large size if it is easily detected (i.e., if it
affects many input elements). An error has a small size
if it is relatively difficult to detect, The size of an

error depends on the way test inputs are selected. Good

test case selection strategies like path testing, boundary

value analysis, magnify the size of an error since they
exercise error-prone constructs. The observed error

size is lower if random testing is employed. Although
the model does not assume random testing (in fact, any
test strategy can be employed), it offers no easy or sys-

tematic way to estimate Ve .
T
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SECTION 2 .
: ] ..;J
A TIME DEPENDENT FAULT DETECTION RATE MODEL R
N )

2.1 INTRODUCTION
gy

In this section, our objective is to develop a
parsimonious model whose parameters have a physical
interpretation, and which can be used to predict vari-
ous gquantitative measures for software performance
assessment. Also of interest is the applicability of
the model over a broad class of projects. Further, it
should be possible to estimate the parameters of the
model from available failure data which could be given
as either the number of failures in specified time in-
tervals, or as times between software failures. ;JE. 1

With this objective, we develop and investigate .Eéfig

a nonhomogeneous Poisson process (NHPP) [BR0O72] model

with a time dependent fault detection rate for the soft-
ware failure phenomenon. By studying the behavior of R
the cumulative number of failures by time t process, N(t)

it is shown in section 2.2 that this process can be well

described by a non-homogeneous Poisson process (NHPP)
with a two parameter exponentially decaying fault de-

tection rate.

2-1

re L 4




P

=

NHPP has been used by many researchers to describe
random phenomena in various applications [CRO74, DUN75,
DVA64]). Some such applications are the occurrences of
coal mining disasters ([MAG52]; equipment failures [DUAGY4,
LEW64, PRO63]; transactions in a data-base system [LEW761];
and software error counts over a series of time intervals
(SCH75]. Various forms of the intensity function for
the NHPP used in actual applications are the exponential
polynomial rate function (LEW76], a log-linear rate
function [COX66], and a Weibull rate function [CRO74,
DON75, MOE76].

Several measures for software performance assess-
ment, such as the number of faults remaining in the sys-
tem, distribution of time to next failure, and software
reliability, are proposed in section 2.3. Based on the
NHPP model, expressions are then derived for obtaining
the estimates and confidence limits for these perfor-
mance measures.

Two methods are described in section 2.4 for esti-
mating the parameters of the model from available fail-
ure data. The first one is for the case when data is
given in the form of number of failures in given time

intervals. The time intervals can be of equal or un-
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equal lengths, but the data must be converted to an in-

o L

terval of the same length. The second method is used

when times between software failures are given. Analy- .

ses of actual failure data are presented in section 2.5. R
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2.2 MODEL DEVELOPMENT
A software system in use is subject to failures SRR j
caused by faults present in the system. The faults are '”nf'4
encountered when a sequence of instructions is executed ',. §
which, in turn, depends on the input data set. 1In this ]
section, we develop a model to describe this failure il ‘i':
occurrence phenomenon.  »,€
2.2.1 Deterministic Analysis of Scftware Failure Process "w’.?
It is useful to first make a simpler analysis by ig- ;:Eé
noring the statistical fluctuations in the number of soft- . 'igé
ware failures before analyzing the failure phenomenon as .
a stochastic process [COX65]. Let n(t) denote the cumu- ‘E"E
lative number of software failures detected by time t. '..;
% Assume that n(t) is large enough so that is can be ex- ]
E# pressed as a continuous function of t. Since the number
Ei of errors in a system is a finite value, n(t) is a bound- °
i ed non-decreasing function of t with B
S :
L.’ n(0) =0 .
[ .
and (2.1) ;
Li n(~) = a L;*
B . ]
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For purposes of modeling, we assume that the usage of
the system is basically similar over time. Then the
number of failures in (t, t+At) is proportional to the

number of undetected faults at t, i.e.,
n(t+At) - n(t) = b{a=-n(t)}at ’ (2.2)

where b is a proportionality constant.
A craphical representation of the above description
is provided in Figure 2.1.

Now, from Equation (2.2), we get the differential

equation
n'(t) = ab - bn(t) . (2.3)

Taking the Laplace transform [ABR65, BUC56] of Equa-

tion (2.3) under the conditions of Equation (2.1), we

have

sh(s) = a—g -~ bn(s) ,

or

N _ ab
n(s) = S(s+b7 ' (2.4)




Dl G~ I e ey SN o e

n(t)

t At 1+4 f

FIGURE 2.1. A Graphical Representation of the
Deterministic Model for Software
Failures.
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where

=St | an(y) . (2.5)

The solution of Equation (2.3) is thus obtained by in-
verting Equation (2.4) and is given by

n(t) = a(l - e Pt | (2.6)

Under the assumptions discussed above, Equation
(2.6) is the deterministic model of the software fail-
ure process. For given a and b, we can easily compute
the number of failures to be encountered by some time t
so that the failure phenomenon can be described with
certainty. It should be noted, however, that the actual

failure phenomenon is not deterministic.

2.2.2 Stochastic Analysis of Software Failure Process

In an actual usage, the software system is subject-
ed to random inputs causing the failures to occur at
random times, i.e., the failure phenomenon is stochastic
{non-deterministic). Therefore, a realistic description

of the failure process must incorporate this randomness.
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Let (N(t), t > 0) be a counting process [PYKé61l,

ROS 76, SNY75] representing the cumulative number of o
failures by time t. (Note that N(t) is a random vari-
able while n(t) above was taken to be deterministic.) _J-h';
Assuming that each failure is caused by one fault, N(t) '
also represents the cumulative number of faults detect-
ed by time t. It should be pointed out that a detected g
fault may not be removed and, as a result, may cause 4
additional failure(s) at a later stage. For the N(t) z
process, such recurrences are counted as new events. R ’.;
Let m(t) be the mean value function of the N(t)
process, i.e.,
SR
1
m(t) = E[N(t)] . (2.7) 9
]
o
Since m(t) represents the expected number of software .‘j
failures or detected faults by time t, it is a non-de- }
creasing function of t. If we assume that there will
. 1
o be a finite number of faults to be detected over a long PY
g
- period of time, m(t) has the following boundary condi- ;
. tions: L
1 ]
F. .‘4
’ 0, t=0 .
m(t) = (2.8) '
P a, t = o .J
}
| |
3 2-8 |
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where a < «» and represents the expected number of soft-
ware faults to be eventually detected. Furthermore, it
is assumed that, for small At, the expected number of
software failures during (t, t+At) is proportional to
the expected number of software faults undetected by

time t, i.e.,

m(t+At) - m(t) = b{a-m(t)}at , (2.9)

where b is a constant of proportionality. Solving the
differential equation obtained from Egquation (2.9) under
the boundary conditions of Eguation (2.8), we get

m(t) = a(l - e Pt

) . (2.10)
This equation specifies the mean value function for the
underlying software failure counting process N(t). The
intensity function, obtained by taking the derivative
of m(t), represents the fault detection rate at time t
and is given by

A(t) = m'(t) = abe Pt | (2.11)

2-9

——

L a3

g

lhmadd el




.. Al T s b EN L e e A o - e L i A i i e e

We now study the probabilistic behavior of the
N(t) process by using m(t) and A(t). Since there are
no failures at t = 0, we have N(0) = 0. It is also
reasonable to assume that the number of software fail-
ures during non-overlapping time intervals are indepen-
dent. In other words, for any finite collection of
times B <ty < el < tn' the n random variables N(tl),
{N(tz)—N(tl)},...,{N(tn)—N(tn_l)} are statistically in-
dependent. This implies that the counting process
{N(t), t > 0} has independent increments.

We assign the probabilities on the increments of

the M(t) process as follows.

o

with probability 1-X(t)at+0(At)

1 with probability A(t)At+0(At)

N(t+At)-N(t) = 2 with probability O(At) (2.12)
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The underlying N(t) process satisfying conditions of
Equation (2.12) is now a NHPP with mean value function
m(t) and intensity function X (t) as given in Equations
(2.10) and (2.1l), respectively [FELW57, FELW60].

Hence, the distribution of N(t) is given by

y
(m(e)}¥ -m(t)

P{N(t) = yl= v1

y =0,1,2,... (2.13)
Under the assumptions discussed above, the stochastic
behavior of the software failure phenomenon can be com-
pletely described by Equation (2.13). It should be

pointed out that Equation (2.9) implies that the ratio

Number of faults detected during (t, t+At)
(Number of faults undetected by t)At

=b (2.14)

is constant at an_; time t. Therefore, b can be inter-
preted as the error detection rate per error.
Equations (2.10) and (2.13) constitute the basic

software failure model under study in this report.

2-11
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2.3 SOFTWARE PERFORMANCE MEASURES -~

The model developed in section 2.2 is a descrip-
tion of the failure phenomenon. In order to use this
model to predict software performance, we generally

need expressions for quantitative measures, such as the

number of failures by some prespecified time, the number
of faults remaining in the software at a future time,
and software reliability during a mission. In this sec-

tion, we develop models that can be employed to estimate

A A
<

such quantities.

2.3.1 Number of Software Faults Detected by t

For given a and b, the distribution of N(t), the

A v ar 4 Lans
. d
L
A

cumulative number of software failures detected by time

F! t, is obtained from Egjuations (2.10) and (2.13) as ‘ ‘ .j
: __-btyyy __.q_.-bt S
; PN (t)=y} = L2l = L)° gmall-e 7)) S
4 ol

F y = 0,1,2,--- - (2°15) ) l .j

In other words, W(t) has a Poisson distribution with

; mean ’ "?
m(t) = E[N(t)] = a(l - e Pty | (2.16) 4

9 o

E: 2-12
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Note that

al -a

P{N(»)=y} = T e , Y =0,1,2,..., (2.17)

g

i.e., the distribution of N(~»), the total number of
failures encountered or faults detected if the system
is used indefinitely, is also a Poisson distribution
with mean 'a'. This result is consistent with theore-
tical studies which indicate that the Poisson process
is the limiting distribution of many phenomena similar
to the software error occurrence phenomenon [MIL76,

SNY 75].

2.3.2 Number of Remaining Faults

We have been considering the number of failures en-
countered by time t, N(t). Since many of the performance
measures depend on the number of faults remaining in the
system, we now consider this phenomenon.

Let N(t) be the number of faults remaining in the

system at time t, i.e.,

N(t)

N(=) - N(t) . (2.18)

2-13
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The expectation of N(t) is given by ' "1

E[N(t)] = ae Pt . (2.19)

a

2.3.3 Conditional Distribution and Expectation of N(t)

If we have already observed y faults, it is useful
to know the distribution of the number of faults yet to
be detected. In other words, the conditional distribu-

tion of N(t), given that N(t) =y, is

P{N(t)=x, N(t)=y}
P{N(t)=y} *

P{N(t)=x|N(t)=y} = (2.20) T:_l_

Now the event N(t) = x denotes occurrences over the time

interval (t,~) while the event N(t) y denotes occur-

rences over the interval (0,t), i.e., these two events

. represent non-overlapping time intervals. From a basic

K property of the NHPP process, such events are independent

of each other, so that we have

r S
. - -
E'l P{F(t)=x|N(t)=y} = P{N(t)=x}, x = 0,1,2,... (2.21) e
{ or | T

. ..
; - .
\ 2-14
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X
P(N(=)-N(t)=x|N(t)=y) = ml)=mE)}" ~{nl=)-ml{e)}

x!

Or, substituting for m(«) and m(t) from Equation (2.10),

we get

P{N(=)-N(t)=x|N(t)=y} = Lla-all-e

Bt))* -(a-a(1-e7%))

x!

This yields

I
o

P{N(t)=x|N(t)=y} . (2.22)

Finally, the expected number of faults to be detected,

given N(t) =y, is

E[N(t) [N(t)=y] = ae Pt | (2.23)

This conditional distribution is important for deciding

whether the software system under development can be

released or not. The decision should be made based on

the number of faults remaining in the software because

this quantity plays an important role in software reli-

ability assessment. Suppose that the decision-maker

conducts an experiment and finds y software faults by

time t.

Then, a decision might be to

2-15
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Accept if N(t) < ng '7”'4
i
and .
Reject if N(t) > n, ., .
--_,.-4
o !
where n, is some specified number. For this decision ‘ ,f

0
rule, the probability that the software system is ac-

cepted for a given number of failures y by time t is -
P{Accept} = P{N(t) < nolN(t) =y}

and, using Equation (2.22), becomes

=]

. 0
P{Accept} = I P[N(t)=i|N(t)=y] . (2.24)

i=0

The conditional expectation of N(t), given N(t)=y,

is given by

E[N(t) [N(t)=y] E[N(t)]

or

EIN(t) |N(t)=y] (2.25)

I
]
o

2-16
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Therefore, the expected number of faults remaining in
the software system at time t, given that y errors have
been detected during the testing period t, is simply
the expected number of faults to be detected during

(t,=].

2-17
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2.4 SOFTWARE RELIABILITY AND DISTRIBUTION OF TIME
. BETWEEN FAILURES

2.4.1 Software Reliability

Let a sequence of random variables {Xi, i=1,2,...}
denote a sequence of times between software failures
associated with the N(t) process. Then xi denotes the
time between the (i-1l)st and the ith failures. We also

define

(é]

m
Ul

=

n=1,2,... (2.26)

i=1

which represents the time to the nth failure. Let ¢l(x)
be the Cumulative Distribution Function (cdf) of Xl,
i.e.,

¢ = P{X1 < X} . (2.27)

(x)
Xy
Note that the event {xl > x} implies that there are no
failures during (0,x], i.e., the event {N(x) = 0}. Then,
using Equation (2.15), the reliability function associ-

ated with the first failure time is given by

Rxl(x) = P{X; > x} = P{N(x) = 0}

-

Bl do

s
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or

-bx
Ry (x) = e~a(l - e ™) (2.28)
1

Now, the cdf of x1 can be written as

¢, (x)
X1

1l -R

(x)
X,
or

=-bx
o, (x) =1 - el - e ™) (2.29)

The Probability Density Function (pdf) is defined as

(x)

d
== ¢
dx 1

¢y (x)

1 X

so that

bx

abe-bxe—a(l - e

by (%) ), (2.30)

1
Next, consider the conditional probability distribution,
¢x2|xl(x|s), of {lexl}. The event {X, > x|X; = s} im-

plies {no failures in (s,s+x]}. Then the conditional

-
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reliability function of the second failure, given that b
the first failure occurs at time s, is given by . 'f
N

szlxl(xls) = P(X, > x|X; = s}

P{no failures in (s,s+x]}

P{N(s+x) - N(x) = 0}
= o [m(s+x) - m(s)]

_ e-—a[e-bs - e7Rls¥x) (2.31)

From Equation (2.31), we obtain

) (x|]s) =1 -R (x]|s)
Xy 1%y Xy 1%y
_ -bs _ _-b(s+x)
=] - e a[e e ] (2-32)
and
d
L ¢ (x|s) = 3= ¢ (x]s)
| X, | %, dx "X, |%; |
} . ia-bS__~b(s+x) ]
: - abe-b(S+x)e ale e }o (2.33) ]
k. .
F -
. 2-20
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Combining Equations (2.29) and (2.33), we get
density of xl and x2 as
¢ (Xy,%X,) = ¢ (%5 [%9) 0y (x7)
Xy X, 1172 x2|xl 21717%x%, "1
-bx =b (%, +x,)
= (abe l)(abe 1772 )
-bx
~bx 1l
. _-a(l-e l)e-a{e e
e
or
-bx, -b(x,+x,)
_ 2,2 1 17¥2’ -afl-e
Oy ,X (xl.xz) = a“be e e
1792
Making the transformation S, = X3, 8, = x1+x2

density of S1 and 82 is

-bs

~bs, ‘bsze-a(l-e

= a“b”e e

In general,
reliability function of Xpr given Sg-1 =
-a{e”Ps - e-b(s+x)}

(x|s) = e .
Sk-1

R
xkl

2=-21

. the joint

2)
. {2.35)

it can be shown that the conditional

s, is given by

P e 4

R L B
- —~ '!-1
the joint ]
-b(x1+x2)}
-b(xl+x2)}

. (2.34)

(2.36) - T
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2.4.2 Conditional Distribution of X.|[s,_;

The conditional cdf and pdf are obtained from Equa-

tion (2.36) by recalling that R(x) =1 - ¢(x) and ¢ (x) =

d
a;@(x). Thus, we have
- ~bs _ _-b(s+x)
ox |s,  (xs) =1 -e afe e } (2.37)
k'"k-1
and
_ _ -bs__-b(s+x)
ox |5, . (x|s) = ape D(8TK)gmate Trre } (2.38)
k'"k-1
respectively.

As can be seen from the above equations, the time
to the next failure depends on the time when the last
failure occurs. It should be noted that the distribu-
tions of times between failures are improvner, i.e.,

o (»].) =1 - &72€ < 1. (2.39)

Xy I8

This is due to the fact that the event {no failures in
(0,]} is allowed in our model. Hence, the expectations

of these quantities do not exist.
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2.4.3 Joint Density of Waiting Times

As defined above, {Xk, k =1,2,...} denotes the se-

quence of times between software failures. Then

is called the waiting time to the nth software failure.
This quantity is quite important for estimation of para-
meters a and b and, hence, we obtain the distribution

of {Sl,Sz,...,Sn}. The distribution is obtained by using

an approach similar to that used for getting Equation

(2.34). The result is summarized in the following theorem.

Theorem. The joint probability density of Sl’SZ""'Sn
is given by

-b
i

S, -bs
i b

e s

1
¢ (Sys.-+,8) = (ap) - e
SyreesSy 1 n

where sl,sz,...,sn denote the realizations of Sl'SZ""'
Sn, respectively.

The density can also be written as

-m(s_) n
= e 1 (s

k=1

°sl,...,sn(51""'sn) k) (2.41)

2-23
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~bs

= a(l-e k r'or

d
o o) ) R

ds
k
a oroof of this theorem, see [COX66] and [DON75].

where A(sk) = {m(sk)} and m(s

Eguation (2.40) will e used later to estimate a

and b based on observed data s = (Sl""'sn)'

2.4.4 Joint Counting Probability

The property of independent increments, along with
Equations (2.8) and (2.12), provides a complete statis-
tical characterization for NHPP so that the joint count-

ing probability can be determined for any collection of

times 0 < t1 < t2 < 4. < tn. That is, with tO = 0,
Yo = 0 _
P{N(tl) = yl'N(tZ) = er---,N(tn) = yn}
n
= T P{N(t;) - N(ty_)) = y; - iy}
i=1
YiTY;-
n Im(t) - me; )1 5 T emee)
= I e . (2.42)
i=1 (Yl - Yl_l)!

Equation (2.42) is needed for estimating the parameters

a and b for given data {(yi,ti), i=1,2,...,n}.

o. )
s
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2.5 ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA

The basic models for the faiiure process and perfor-
mance measures were developed in Sections 2.2 and 2.3,
respectively. In order to use these models for software
performance assessment, the only parameters to be speci-
fied are the total expected number of errors to be de-
tected, a, and the error detection rate per error, b.

In other words, for given a and b, various useful quan-
tities can be computed from the relevant eguations in
sections 2.2 and 2.3.

In general, a and b are not known for a specific
soitware system and are estimated from the available
data generated during testing. However, that is not
the only way to get a and b. One may be willing to ex-
trapolate these values based on the data from one or
more "similar" systems. Another method would be tc use
a Bayesian approach, whereby knowledge about a and b can
be expressed as prior distributions and used for perfor-
mance assessment. This approach can also be used in
conjunction with available data and is specially useful
when failure data are scarce or expensive to collect.

The purpose of this section is to describe methods

for estimating a and b from failure data. Use of these

2-25
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methods is illustrated later via failure data from oper-
ational systems. Such data are generally available as

(i) total number of failures in given time

intervals; and/or as

(ii) times between failures.

Most of the available data is given in the form of
number of failures in given time intervals; the data on
times between failures is very rare. Nevertheless, both

of these cases are considered below.

2.5.1 Estimation When Cumulative Failures Are Given

We first consider the case when data are available
as cumulative number of failures in given time intervals.
Suppose Yy+¥oyree-ry, are the cumulative number of failures
detected by times tl’t2""'tn' respectively. This can
also be written as data pairs {(yi,ti), i=1,2,...,n}.
Thus, the number of failures in time interval (b, _1-%4)
is (yi-yi_l) for i = 1,2,3,...,n, where t

0 = 0 and Yo = 0.
We will obtain the Maximum Likelihood Estimates é and B
of a and b, respectively. To do this, we first write the
joint density and obtain the likelihood function, and
then the log-likelihood function. Next, we take the par-

tial derivatives of the log-~likelihood function with re-

spect to a and b and equate them to zero for maximization.

2-26
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The solutions of the resulting two equations are the de- -.!}
sired values (;,5).
Now, to get the joint density, we note that in our
notations Yis¥pre-esY, are the observed values of N(tl), } <—.‘
n(tz),...,N(tn), respectively. Hence, from Equation
(2.42),
=
A
P{N(tl) = yl,N(tz) = yz,...,N(tn) = yn}
Yi7¥i1
_ ;[1 [m(ti)-m(ti_l)] e-{m(ti)-m(ti_l)} - g
i=1 (Y:-ys_ 1)1 =
i1l (2.43) .
-bt, o 3
where m(ti) = a(l-e Y. , ':
It is well known that the likelihood function for "]
the parameters is simply the joint density.of Yyr¥oreeey g
]
Ypr with these values considered as known constants. "
Substituting for m(ti) in Equation (2.43), the likeli- ;:ﬁ
hood function for (a,b), given the data (t,y), is  {}
o]
N age DTiml_ %1y YiTYin ]
L(a,bly,t) = 1 E
. _ . .
1 (Yi yi—l) : o
-btn v1
cerallre ) (2.404) .
]
}i Taking the natural logarithm of Equation (2.44) yields: o
2-27 3
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tnL(a,bly,t) =

As mentioned above,

(mle's) are those values of a and b which maximize

n n
X (yi-yi_l)zna + I (yi—yi_l)
i=1 i=1
-bt -bt. n
« inf{e 1 1-e l) - I
i=1
-bt

. ln(yi—yi_l)! - a(l-e

the maximun likelihood estimates

gnL(a,b|t,y), i.e., which satisfy (for brevity we write

L to denote L(a,b|t,

and

Y))

aenkL

52 0
anL _
=B - J9 .

(2.46)

By taking the partial derivatives of Equation (2.45)

and equating them to zero, we obtain, after some simpli-

fication (recall that Yo = 0),

and

PO o ey a _ o

—btn
a(l-e )
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ﬁ! The solutions of the resulting two equations are the de- w_‘_
sired values (a,b).

Now, to get the joint density, we note that in our

notations Yy¢Ygeeeery, are the observed values of N(tl), FTe
N(tz),...,N(tn), respectively. Hence, from Equation
(2.42), T
- g
P{N(t,) = y,,N(t;) = y,,...,N(t ) =y}
Yi7¥i-1 o
_ g [m(t;)-m(t; ;)] e—{m(ti)-m(ti_l)} ro
i=1 (Y:=y:_q)!
i 71-1 (2.43)
-bt. _— '. 4
where m(ti) = a(l-e 1). " 'Ti!
It is well known that the likelihood function for  €
the parameters is simply the joint density of Yye¥oreesy e
4
Yy with these values considered as known constants. ' ’A
Substituting for m(t;) in Equation (2.43), the likeli- ]
hood function for (a,b), given the data (t,y), is ; fa
) ¢
n {a(e'bti-l_e'bti)}Yi'yi-l ] |
L(a,b|y,t) = T 1
t‘. ‘ i=1 (yl"'yi_l) !
| -btn ’ v
F . gmallme ) (2.44) ] 1
» ¥
L. Taking the natural logarithm of Equation (2.44) yields: ) v
2 2-27 "
h ’ -
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]
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n n
lnL(a,bIz,E) = L (y;~y:_)tna + I (y.-y._;)
i=1 i fi-1 i=1 i4i-1
~bt. _ -bt n
c n(e : l-e l) - I
i=1
-bt

c 2y -y o)t - allme ). (2.45)

As mentioned above, the maximum likelihood estimates
(mle's) are those values of a and b which maximize
2nL(a,b|£,X), i.e., which satisfy (for brevity we write

L to denote L(a,b|t,y))

atnkL

Jda =0

and (2.46)
oe4nL _
"ab - 0 .

By taking the partial derivatives of Equation (2.45)

and equating them to zero, we obtain, after some simpli-

== fication (recall that Yo = 0),

= -bt

a(l-e ’ (2.47)

L‘ and
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sy

-bt n
ate "= g
n ‘=

1

(yj-¥;_p) (t5e i'ti-le
-Bti_l :bti . (2-“8)
e - e

1

As can be easily seen, all the quantities in Equa-
tions (2.47) and (2.48) are known except a and b, which
are to be estimated. These equations do not yield sim-
ple analytical forms and we use numerical methods for
their solution. The resulting values of a and b are

the mle's a and 5, respectively.

It should be pointed out that, even though the mle's

are the desired values, it is often useful to study the
log-likelihood surface as a function of parameters a and
b. For given data, a plot of the log-likelihood surface
can be obtained by solving Equation (2.45) for a grid of
values of a and b. If the plot is flat, it woull indi-
cate a large variability associated with the mle's while
a sharp surface is an indicator of low variability. A
surface with sharp rises and falls might cause problems
in numerical solution of Equations (2.47) and (2.48),

while a well-behaved surface would ensure rapid conver-

A A

" gence to the values a, b.
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2.5.1.1 Confidence Region for (a,b)

In addition to the mle's a, b, we generally want

NG Gl U

to quantify the region in which the true values a, b -

K

might lie with a specified degree of confidence. This
is referred to as obtaining the 100(l1-u)% joint confi-

dence region for (a,b). 1In general, it is not possible

¢

to get the exact confidence region [FIN76] because the
true distribution of (5,5) is unknown. lowever, mle's
have a very desirable property that they are asymptotic-
ally normally distributed, if the sample size is large.
Also of great usefulness is the invariance property
of the mle's, i.e., a function of (a,b) can be estimated
by using the mle's ;, 5 and this function will also be a
mle. This will be useful for estimating N(t), R(t), etc.

Formally, as indicated above, the mle's are normal-

ly distributed for large n, i.e., o]

_ -~ h
; a a | |
‘ ~ ] v N R Zcov as n » = (2.49)
o b b ]
t A
[ LA
1 1
E The variance-covariance matrix represents
L. L 2
[ ) R
[ 2-30 ]
3 1
b i }
r‘. /.0 ' w
S 4
. [ J
(]
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Var (a) Cov(a,b) -.ﬂ<‘;
) = i
cov )
Covi(b,a) Var (b) ‘
ey
and is given by 1
—l -
raa Tab - L b
Zcov = (2.50) :
Tva Tvb .i
where "
2 3
_ _w9 nL s
rij = E—B:'L_B_jr ¢ i,j=a,b . - Y |
g
1
That is, ]
1
2 i
— _p o _&nL .
r,, = “E —3= (2.51)
sa
i" ,
': _ _ _o 3°anL "
_ Tap = Ypa = "E dadb (2.52)
i
2
_ _p 974Nk -
b = E — (2.53)

ob




Taking the appropriate partial derivatives of
Equation (2.45) and substituting in Equations (2.51),

(2.52), and (2.53), we obtain, after some simplifica~

-bt.
tion, (recall that E[N(t;)] = m(t;) = a(l-e ©)):
n ~-bt, ~bt,
_ 1 i-1 i
Tia- 3 'Z (e - e Yy (2.54)
i=1
-btn
Tip = s = tne R (2.55)
and
-bt -bt
n (ti_l—ti)ze i-1 711 5 bt
rp = aiil B,y BE, T Ata " © . (2.56)
(e e )

Substituting these expressions in Equation (2.50), we
get the variance-covariance matrix for (;,B). Thus,

the asymptotic distribution of (;,5) is completely spe-
cified .7 (a,b) are known. However, in practice, (a,b)
are not knowr Therefore, we use their estimates, (é,ﬁ),
in Equations (2.49), (2.54), (2.55), and (2.56) to get
estimates of the parameters of the asymptotic bivariate

normal distribution.
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Now, the correlation coefficient between a and b

is estimated as

N Cov (a,b)
pa,b - —
\JIQar(a), Var (b)

’ (2.57)

where Var(;), Var(g), Cov(;,g) are obtained from Equa-
tions (2.50) to (2.53).
Finally, to obtain the 100(l-a)% confidence regions

for a and b, we use the following approximation ({ROU73])

¢nL(a,bly,t) - nl(a,bly,t) = %xg.a
or
enL(a,bly,t) = enL(a,bly,t) - %Xg;a (2.58)

where lnL(é,ﬁ[z,g) represents the value of the log-
likelihood function at a = é and b = 5.
Substituting Eqguation (2.45) in Equation (2.58),

we get




~J T

AR ad

P —— r

I (y;=yj_q)na + I (y;-y;_;)n(e -e )
i=1 ¢ i=1
n —btn

- _E tn{(y,-y;_;)!} - a(l-e ) = C, (2.59)

i=]1
where

_ o0 1l 2

C = enL(a,bly,t) - 5x5., (2.60)

Equation (2.59) defines a contour of the 100(1-a)%
confidence region. For given data, ;, B, and a, Equa-
tion (2.59) can be solved for those values of a and b
which satisfy it. (For computational purposes, it is

easier to take values of a (> a) and solve for the cor-

responding values of b.)

2.5.2 Estimation When Times Between Failures
Are Given

Now we consider the case when data is available in
the form of times between individual failures. As men-

tioned earlier, such data is not common and is rarely

available.
Recall that xl,xz,...,xn denote the times between
n
failures and Sn = I Xi' Then the data is in the form
i=1

...,..4
. : 4

ol

P TN eY




n
£ X.,. The distribution of

X = (X3/%X5,...,% ) and s = i

N i=

times between failures was discussed in section 2.4.3

and is obtained from Equations (2.40) and (2.41), as

— n .
(sl,...,sn) = (ab) e

¢sl,...,sn

The likelihood function for a, b, given s, is the same

as above and can be written as

_b .
: 1
L(a,b|s) = (ab)® . e 1~ . gall-e . (2.61)

o3
/]
|
o
(4]

Then the log (natural) likelihood is

n -bs

{ ¢nL(a,b|s) = ntna+ninb-b & si—a(l—e my . (2.62)
b i=1
e
ﬁ To get the maximum likelihood estimates a, b, we take
[
i the partial derivatives of Eguation (2.62) and equate
K them to zero, i.e.,
3
i aanL _
- Yol o, (2.63)
-
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and

3¢nkL _
Y 0 . (2.64)
These equations yield
n -bs
3= 1l -e (2.€5)
and
n -bsn n
g =as -e + % s; - (2.66)
i=1

As in the first case, these equations do not yield
simple analytical solutions and have to be solved
numerically. The solutions of Egquations (2.65), and
(2.66) are the mle's é and 5.

Regarding the asymptotic distribution of (;,5), re-
call that (see section 2.4.2) the joint density of Sl’
...,Sn is improper. Therefore, the asymptotic prooer-
ties of mle's do not hold in this case.

To obtain the 100(l-a)% confidence regions for

{(a,b), we use the same approximation as was used in

section 2.5.1, viz.
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tnL(a,b|s) - tnL(a,bls) = 3x3. . (2.67)

From Equations (2.62) and (2.67), a contour of the

100(l-a)% confidence region is obtained as

n -bsn
ntna + ntnb - b s; - a(l-e ) =C, (2.68)
i=1
where
C = enL(a,b|s) - 3x3. . (2.69)

As before, Equation (2.68) can be solved for given

s, a, b, and a to get the desired contours.




g' 2.6 GOODNESS-OF-FIT TEST

~

&i In this section, we describe the Kolmogorov-Smirnov
S goodness-of-fit test (K-S Test) to check whether the

?;- i NAPP model developed in sections 2.2 and 2.5 provides a
ii good fit to a given set of failure data.

i? Consider the case when the data are given as a se-
?% quence of software failure times s = (sl,sz,...,sn). We
i? want to test whether the events s are generated from a

s NHPP. Suppose that 0 < §; < S, < ... < S are the random
*: times at which the first n events occur in a NHPF with un-
i known mean value function m(t). We wish to test the

N simple hypothesis

\ Y

5 Hy: m(t) = mo(t) for t > 0,

- versus
j le m(t) # mo(t) for t > 0.
-b,t
Writing mo(t) = ao(l-e ), the hypothesis H, can be
written as
-2-38 SRR




- -b
{: Hy: m(t) = ao(l-e

t

") for t > 0.  (2.70)

Ty For testing purposes, we need the joint conditional dis-

tribution of the failure times. The following theorem

W is useful in deriving this distribution.

Theorem. Given that N(t) = n, the n failure times
0 <8 <28, < ... 28, in the interval [0,t] are random
b variables whose joint conditional distribution is the

same as the distribution of the order statistics of a
m

o~

x)

(t)

- random sample of size n from the distribution G(x) =

g

" for 0 < x < t.

For proof of this Theorem, see Cox and Lewis [COX66].

e Corollary. Given that s, =t thé (n-1) failure times
0 < §) 285, 2 «e0 < S,-1 have the same joint conditional
distribution as the order statistics of a random sample
:Ei of size (n-1) from the distribution G(x) = ﬁ%%% .
This Corollary easily follows from the above Theorem.
Using this Corollary, we reduce the hypothesis of Equation

i (2.70) to

HO: G(x) = Go(x) = Eo—(-t-)- for 0 < x < t. (2.71)

Z 2-39




For our case we have

-box
Hy: G(x) = l:2:53€ for 0 < x < t. (2.72)
l-e

Note that the expression in Equation (2.72) represents a
truncated exponential distribution.

We now consider the Kolmogorov-Smirnov (X-S) good-
ness-of-fit test [ROM76, ROV73]. Given the values of
a random sample of size n-;, 811831048, 11 WE define
the sample cdf by Hn_l(x) = k/(n-1), where k is the
number of sample values < x. Thus, Hn_l(x) is a step
function which is zero for x less than Sys has a jump
of 1/(n-1) at each Sy and is 1 for x greater than or

equal to s _,. That is,

0 , X < Sl

Hn_l(x) ={ k/(n-1) , 8y _15X<8y, k=2,3,...,n-1. (2.73)

Since H _, is a step function and G is monotonically in-

creasing and continuous, it suffices to test the absolute
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deviations at the sample points Sy » k=1,2,...,n"1,

and then take the maximum of these (n-1l) values. The
following procedure is used for calculating the test
statistic D. For each k =1,2,...,n-1, set

D, = max{IGo(sk) - H§II ’ IGo(sk) - %E%I}.

Then set

D = m;x{Dk} . (2.74)
If the value of D calculated in Equation (2.74) is great-
er than or equal to the critical value Dy1;4’ We reject
the null hypothesis H, that S,,S,,...,5 _, follow Go(i);
otherwise we do not reject the null hypothesis. The
critical values Dp-1;a associated with the K-S test at
a level of significance o are available from statistical
tables [ROH 76, p. 661].

It should be noted that, if the parameters of Go(x)
are estimated from the sample, the K-S test can be used
but will give extremely conservative results. To achieve
better results, the level of significance needs to be

adjusted. One approach suggested by Allen [ALL 78] is
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to test at the 5% level of significance and use the
critical value for the 20% level or test at the 1%
level and use the critical value for 10% level. We
will use this approach in our analyses in later sec~-
tions.

Another use of the K-S test in our context is in
developihg confidence limits for the true cdf G(x).
For example, if we take a random sample of size (n-1)
and use it tc construct the sample cdf Hn_l(x), then
we can be 100(l-c)% confident that the true cdf G(x)
does not deviate from H _, (x) by more than Dn-l;a‘
That is, the 100(l-a)¥% confidence limits for G(x) are
given by
. (2.75)

Hn-l(x) -D < G(x) < Hn_l(x) + D

n-l;a n-1l;a

These limits are especially useful in the case when the
parameters of Go(x) are to be estimated from the data.
For this case, the null hypothesis Hy will be rejected
at a level of significance o if one or more points of
Go(x) fall outside the 100(l-c)% confidence limits given

by Equation (2.75). Otherwise, it will not be rejected.
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2.7 ANALYSIS OF FAILURE DATA FROM NAVAL TACTICAL

DATA SYSTEM (NTDS)

Jelinski and Moranda [JEL 72] first analyzed some
software failure data from the U.S. Navy Fleet Computer
Programming Center. Since then, this data set has been
used by several investigators for model validation pur-
poses. In this section, we analyze the same data set
to see how good the NHPP model is in modelling these
failures.

The data set was extracted from information about
errors in tﬁe development of software for the real-time,
multi-computer complex which forms the core of the
Waval Tactical Data System (NTDS). The NTDS software
consisted of some 38 different project schedules. Each
module was supposed to follow three stages: the produc-
tion (or development) phase, the test phase, and the
user phase. Many of the "trouble reports" or "software
anomaly reports" were generated whenever a system-level
symptom of a deficiency was noted by operators or users.
A proper trace back to the exact cause in software of
this symptom was done by personnel familiar with the
entire system. However, Jelinski and Moranda felt that
it was better to analyze the data from isolated modules

than from the total system, due to the fact that many
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of the modules did not evolve in the fashion indicated.
One of the larger modules, denoted by A-module, had the
desired pattern. The times (in days) between failures
for this module are shown in Table 2.1. Twenty-six
e software faults were found during the production phase
and five additional faultr during the test phase. The

last fault was found on 4 Jan 1971. One fault was ob-

_ served during the user phase on 20 Sept 1971 and two
. more faults (4 Oct 1971, 10 Nov 1971) during the test

phase. This indicates that a re-work of the module

had taken place after the user error was found. A more
< detailed description of the NTDS software can be found

in [JEL72].

Data Analyses

The data in this case is available as times between :ﬁfi#
software failures and hence the method described in
section 2.5.2 will be used for estimation of parameters.

We consider the first 26 data points of Table 2.1, for
26

I x, = 250 days.

k=1 ¥

To get an appreciation of the likelihood function

which n = 26 and 526 =

associated with this data set, the log-likelihood from . 2

Equation (2.62) is plotted in Figure 2.2. We see that :;fﬂfj
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TABLE 2.1 R,
SOFTWARE FAILURE DATA FROM NTIDS RS
ERROR NO. TIME BETWEEN FAILURES CUMULATIVE TIME Hz_fi
' X, » days s =T Xy days C
Production : 4
(Checkout) Phase ORI
"
1 9 9 TR
2 - 12 21 .

3 11 32

4 4 36

5 7 43

6 2 45

7 5 50

8 8 58

9 5 63

10 7 70

11 1 71

12 6 77

13 1 78

14 9 87

15 4 91

16 1 92

17 3 95

18 3 98

19 6 104

20 1 105

21 11 116

22 33 149

23 7 156

24 91 247

25 2 249

26 1 250

Test Phase

27 87 337

28 47 384

29 12 396

30 9 405

31 135 540

User Phase

32 258 798 SR
Test Phase }
33 16 814 , e
34 s 849 o g
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the surface rises sharply along the b-axis and is rela-
tively flat along the a-axis.

The maximum of this surface is obtained by solving
Equations (2.65) and (2.66). Substituting the appropri-

ate values from Table 2.6 in Equations (2.65) and (2.66)

we get ’
* 28 -1 - 7P(230) (2.76)
and
Eg. = a(250) - e P(250) . 559, (2.77)

Solving Equations (2.76) and (2.77) numerically, we get

>

33.99

]
]

and

[ o 28
f

= 0.00579

as the mle's for a and b, respectively. The fitted mean

value function is
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m(t) = 33.99(1 - ) . (2.78)

and is shown in Figure 2.3, along with the actual data ’**'1
(determination of the confidence bounds will be discuss-

ed later).

Goodness-of-fit Test

We now perform the Kolmogorov-Smirnov goodness-of-
fit test to check the adequacy of the fitted model. Now,
using the Corollary and the results in Section 2.6, we

conduct the test based on 26-1 = 25 points. The hypo-

thesis, from Equation (2.71), is RIS
-byx fi

: 1-e 250, (2.79) o

Hy: Gy (x) ~b, (250) for 0<x<250, . :¢;é}

l-e -, -.\...,-_*

and the sample cdf is _é&
- '.‘-

0 r X <85y ?f{;;

H(x) = k/25 , s, _;<x<s,, k=2,3,...,25 . (2.80) "i';i




L

l" Upper Bound
8 0

a=33.99
8- 0.00579

n= 26

Actual

Fitted

NO. OF ERRORS
N
O
I

Lowexy Bound

| | | ! L
0 50 00 150 200 250 300

TIME (DAYS)

Figurec 2.3. Plots of Mean Value Function and 90% Confidence

".~ Bounds for the N(t) Process (NTDS Data)
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The values of Sy and H(sk) are given in Table 2.2. To

compute Go(sk) for various Sy values, we .2place b0 by

5 in Equation (2.79) and obtain Column 4 of Table 2.2.

Entries in Columns 5 and 6 are easily obtained from

Columns 3 and 4. Now, from Equations (2.47) and (2.79),
D = mixHGO(sk) - H(sp) |+ |Gy(sy) = H(sp )|} g

In other words, D is the largest entry in Columns 5 and

6 and is seen to be »aa.i
¥

D = 0.2044. b

.;;454

~ -

To test at « = .05, we use a critical value correspond- njviq
ing to @ = ,20 as discussed in section 2.6.

From statistical tables,

D25;0.2 = 0.208 .

2]

Since D < D25;0.2' we accept the nuil hypothesis, 0’

at 5% level of significance.

The 100 (1l-a)% confidence limits for G(x) can now

be calculated from Equation (2.75). For example, for
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TABLE 2.2

KOIMOGOROV~-SMIRNOV TEST
FOR THE NTDS DATA SET

-
-

.y e ——_———
A A PR
: et
e . R
DR . PLE

P AR

LY

v
‘

k | 5 | H(sy) |Gglsy) 1Gg (s )-H(sy ) | [ 1Gy(sy )=H(s) ;) !

1| 9 | o0.04 |o0.0664 0.0264 0.0664 |

2| 21 | 0.08 | o0.1497 0.0697 0.1097 o

3| 32 | 0,12 [o.2211 0.1011 0.1411 .

4| 36 | 0.16 |0.2460 0.0860 0.1260 i

s| 43 | 0.20 | 0.2882 0.0882 0.1282 .

6| 45 | 0.24 | 0.2999 0.0599 0.0999 i;v

7| s0 | 0.28 | 0.3286 0.0486 0.0886 -

8| s8 | 0.32 0.3730 0.0530 0.0930 I

9! 63 | 0.36 | 0.399 0.0396 0.0796 -

10| 70 | 0.40 | 0.4357 0.0357 0.0757 s

11| 71 | 0.44 | 0.4407 0.0007 0.0407 .
12| 77 | 0.48 | 0.4703 0.0097 0.0303 T
13| 78 | 0.52 | 0.4751 0.0449 0.0049 R
14| 87 | 0.56 | 0.5174  0.0426 0.0026 &_ﬂg;
15| 91 | 0.60 | 0.5355 0.0645 0.0245 .-
16 | 92 | 0.64 0.5399 0.1001 0.0601 ﬁ{g?
17| 95 | 0.68 | 0.5532 0.1268 0.0868 L
18 | 98 | 0.72 | o.5661 0.1539 0.1139 T
19 104 | 0.76 | 0.5915 0.1685 0.1285 L 31
20 [105 | 0.80 | 0.5956 0.2044 0.1644 ]
21 {116 | 0.84 | 0.6395 0.2005 0.1605 ]
22 | 149 | 0.88 | 0.7557 0.1243 0.0843 - figl
23 |156 | 0.92 | 0.7776 0.1424 0.1024 S
24 |247 | 0.96 | 0.9946 0.0346 0.0746 ]
25 |249 | 1.00 | 0.9982 0.0018 0.0382 :

l:;j
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3: a = 0.05, we have D = 0.264, so that the lower .Zu!a
X 25;0.05 S
» and upper confidence bounds are
#! L(x) = max{H(x) - 0.264,0}
[
= and
L |
U(x) = min{H(x) + 0.264,1},
where H(x) is given by Equation (2.80). The 95% bounds
for G(x), along with Go(x), are shown in Figure 2.4.
We see that the fitted model seems to be adequate.

Having established that the model provides a good
fit, various performance measures of interest can be
obtained by substituting the estimated values of a and
b in the appropriate equations of sections 2.3 and 2.4.

The estimated mean value function, as given in Equa-

-0.00579t

tion (2.78), is ﬁ(t) = 33.99(1-e ). A plot of

ﬁ(t) and the actual number of faults detected during the
production period for this case was given in Figure 2.3.
Also shown were the 90% confidence bounds for the N(t)

process as computed from Equation (2.15). 7—~ff1
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be =b=0.00579

LOWER BOUND

] L 1
0 S0 100 150 200 250

TIME (DAYS)

Figure 2.4 95% confidence bounds for the conditional
c.d.f. G(x) and the fitted C.D.F. curve R
(NTDS data) L g
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. The 100(1-a)% confidence regions for a and b are ]
;u obtained from Equations (2.68) and (2.69) following a R
. i
procedure similar to the one detailed in section 2.7. 1

1

These are shown in Figure 2.5 for a = 0.05, 0.25, and
0.50.

(x|250), can 1ff‘ 3
Xy71826 T
be computed from Egquation (2.36). For example, the re- ' :

Finally, software reliability, R

liability values after x = 5, 10, 20, and 30 days are

0.796, 0.638, 0.417, and 0.280, respectively. Thus, the

LEI s o o g+ 3 e n a4 s e s o
P LN
R R L Vit g e R

probability that the system will operate without any _ffﬁfg
. R »
failures for 30 additional days is 0.28. As seen from 33,;3!

the data in Table 2.1, the system did operate without
any failures for 87 days subsequent to failure number

26.
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95% n =26
75%
50% -

PARAMETER

\N R

1 1 1
o 0.003 0.C0s 0.009 0.012 0.015
PARAMETER b

Figure 2.3. Joint Confidence Regions for a and b (NTDS Data)
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2.8 ANALYSIS OF FAILURE DATA FROM A LARGE SCALE

SOFTWARE SYSTEM

The data to be analyzed in this section have been
taken from a large scale project reported in Thayer et
al. [THA76]. This project represents an initial de-
livery of a large command and control software package
written in JOVIAL/J4 (JOVIAL is a higher order language
generally used for Air Force Command and Control appli-
cations). It consists of 115,346 total source state-
ments and 249 routines. Some other characteristics of
this project are summarized in Table 2.3. The software
was developed functionally, i.e., the project was di-
vided into work units responsible for different func-

tions. Software testing started with developing test-

ing by the development personnel to demonstrate specific

functional capabilities, test data extremes, etc.

2.8.1 Failure Data

The failure data used for this study is taken from

the Software Problem Reports (SPR's) generated during

the formal testing phases of this project. Formal test-
ing, which comprises of validation and acceptance testing,

began after development testing. Validation testing was
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TABLE 2.3

SOFTWARE PROJECT CHARACTERISTICS

1'.. Ch it 4 r.i,_' —

Size (Total source statement) 115, 346
Number of routines 249
Language JOVIAL/J4
Formal Requirements To function level
Co-contractor Yes
Subcontractor No
Operating Mode Batch
Formal Testing 24 weeks
Validation 10
Acceptance 2 Lo
Integration 10 T
Operational Demonstration 2 e
1 4 . >.-.
:23?3}
]
f} ‘."‘:.i.!
RS
N
N " 9
..'
R
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performed by an independent test group at the subsystem e
level and demonstrated the approved software performance
and requirements. Acceptance testing ran a subset of

the Validation tests to demonstrate specific requirements.

After Acceptance testing, the software underwent final

Integration testing by an independent group. Integration

testing demonstrated that the applications software cor-
rectly interfaced with the operating system and system
support software. Finally, Operational Demonstration
testing was done to demonstrate the software in an oper-

ational environment using an operational timeline and

operational data. The data for this error data set was
obtained from the four formal test phases (Validation,
Acceptance, Integration, and Operational Demonstration)
of the applications software. This is so because the
majority of the errors analyzed were detected during R

formal testing.

The time period for the various phases of testing

is validation (Jun 1-Aug 12), Acceptance (Aug 13-Aug 24), jjgjii
Integration (Aug 25-Oct 26), and Operational Demonstra- j;f;ﬂ
tion (Oct 27-Nov 12) testing. In addition to the above ’ ;Ei
data, operational data spanning a period of approximate- 5~~::
ly nine months was also available and is used for com- E .ﬁ~j
parison with the predicted values. The only time frame fp;

N
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readily available from the data was the calendar day.
The data also contain the mistakes by the operators and

the "explanatory" errors, i.e., corrections to make a

change to a comment statement or those errors for which
a "fix" is not to a routine. These explanatory errors
do or do not indicate the type of change. Therefore,
the original data was restructured into four sets of
data denoted by DSl1l, DS2, DS3, and DS4 ([SUK76]. The
description and the total number of faults detected dur-
ing the formal testing phases for each data set are
given in Table 2.4.

In this analysis, the number of software faults

detected during formal testing is counted on a weekly ’
f: basis. Also, for each data set, the software faults f;}éé
?- detected during the first nine weeks are eliminated ]
g! due to the fact that we are interested in analyzing ?;  }?
~ the software failures over the period when they are |
decreasing. The number of SPR's for the 15-week period ;f;ff‘

for the four cases (DS]1 to DSli) are given in Table 2.5. B 4"}

2.8.2 Estimation of Parameters

As seen in Table 2.5, the data for this project oy

are in the form (tl’yl)'(tz’yz)""'(tIS'yls)’ i.e.,
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as the number of failures in specified time intervals.
Hence, the estimates ; and B are obtained by simultane-
ously solving Equations (2.47) and (2.48). Thus, by
substituting the data set DS1 in Eguations (2.47) and

(2.48) and solving, we get
a = 1348, b = 0.124 ,
and the fitted mean value function is
m(t) = 1348(1 -
This is also an estimate of the expected number of soft-
ware failures observed by time t. A plot of the actual
cumulative number of failures and the fitted values is

given in Figure 2.6.

2.8.3 Goodness-of-fit Test

The goodness-of-fit test is now conducted following
the procedure discussed in section 2.6. Since the sample
size is 15, the null hypothesis to be tested can be

written as

L b




1200

CONFIDENCE BOUNDS
(DS1)

1000 |-

800

600

OF FAILURES

NO.

400

200

Upper bound —-:-mmens -~
Fitted
Actual
Lower bound

: ' TE

5 10 15 -
TIME (WEEK)

Figure 2.6. Actual and Expected Cumulative Number :
of Failures and 90% confidence bounds
for the N(t) process for data set DSI.
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1- .
Hy: Gglt;) = fbo(ls for i=1,2,...,15, (2.81)
l-e

and the sample cdf as

1
H(x) = Yi/y15 ’ ti_l<x<ti' i=2’3’¢.o115- (2.82)
1 ' X 2ty

The computed values of H(x) for various t; are given in
column 2 of Table 2.6.

PN

Now we substitute b0 = b = 0.124 in Eqguation (2.81)

and compute the value of Go(ti) fori=1,2,...,15.

These values are given in column 3 of Table 2.6. Columns

4 and 5 of this table are the quantities needed to find

D = max{Dk} (see Equation (2.74)). From these columns

we fiﬁd the value of D to be 0.096 corresponding to t; = 9.
To find the critical value corresponding to sample

size 15 and ¢ = .05, we first note that the parameters

had to be estimated in this case. As mentioned in sec-

tion 2.6, for a situation like this, a suggested ap-

proach is to take a = .20 to get good results. From

PP ST )

}
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L
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TABLE 2.6 ' - 1

DATA FOR KOLMOGOROV~SMIRNOV TEST S

(DATA SET DS1) . j

—.‘T

ty H(t,) Go(ti) IGo(ti)-H(ti) ] 16, (ty)-H(t,_;)! L ',gl
1] 0.1784 | 0.1381 0.0403 0.1381 o
2 | 0.2979 | o0.2601 0.0378 0.0817 "“*i%
3| 0.4587 | 0.3679 0.0908 0.0700 ]
4 | 0.5000 | 0.4631 0.0369 0.0044 e
5 | 0.5404 | 0.5472 0.0068 0.0472 ’“‘“i?
6 | 0.6028 | 0.6215 0.0187 0.0811 S
7 | 0.6503 | 0.6872 0.0369 0.0844 o
8 | 0.7004 | 0.7452 0.0448 0.0949 A
o

9 | 0.7707 | 0.7964 0.0257 0.096 L
10 | 0.8269 | 0.8416 0.0147 0.0709 -
11 | 0.8506 | 0.8816 0.031 0.0547 o9
12 | 0.8875 0.9169 0.0294 0.0663 ]
13 | 0.9359 | 0.9481 0.0122 0.0606 o
g

14 | 0.9903 | 0.9757 0.0146 0.0398 c '1
15 | 1.0000 | 1.0000 0 .0000 0.0097 o
N

]

T

:

1

o
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the statistical tables [ROH76, p. 661], = 0.266.

Dys; .20
The observed value D = 0,096 is less than the critical

value 0.266 and hence we accept the null hypotheses of
Equation (2.76). Thus we conclude that at 5% level of

significance the model

-0.124¢

{1348 (1-e~0- 128t )

yl

P{N(t)=yl} =

can be considered to provide an adequate fit to data
set DSl.

To further check the adequacy of fit, we compute
95% confidence bounds on G(t;). From Equation (2.75),
these bounds are given by

H(t;) - D < G(t;) < H(ti) + D

15;.05 15;.05°

From the statistical tables, Dyg. .05 = 0.366 and hence
the 95% confidence bounds are given by H(ti) + 0.366.
A plot of these bounds and the fitted values are shown

in Figure 2.7.
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Figure 2.7. 95% confidence bounds for the conditional
c.d.f.G(ti) and the fitted curve for
DS1 data
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2.8.4 Confidence Regions for (a,b)

To get an appreciation of the variability in the

estimated values of a and b, we now construct confi-
dence regions for (a,b). Such regions are given by
3 Equations (2.59) and (2.60). For o = .05, the 95%

!. joint confidence region will be the solution of the

following equation:

enL(a,b|y,t) = anL(a,bly,t) - %Xg-.os d

where
- - 15 15
1nL(allerE) = T (yi-yi_l)ﬂ,n(l348) + I (yi-yi-l)
i=1 i=]
-.124¢, -.124¢, 15
-1 i
. anf(e 1=l e ) = L an{(y,-y. )!}
i=1 i “i-1
-.124¢
- 1348 (l-e 15y,

Data (yl'tl)'(y2’t2)""'(y15't15) were given in Table

2.5 and

X2:.05 = 0.103 .
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A plot of this region is shown in Figure 2.8. From this ;? f:
plot we see that, even though the most likely values of . ;?
- R e
a and b, based on the data, are a = 1348, b = 0.124, the ‘ .
true values can vary over the entire region contained A _~j
in the 95% contour. Values a = 1450, b = 0.11 will be
acceptable (with 95% confidence) and so will a = 1250, ERERNS
b = 0.14, 50% and 75% confidence regions are also shown :.;g
T
in Figure 2.8 anfl can be similarly interpreted. B
i &
2.8.5 Variance-Covariance Matrix for (a,b) T
The variance-covariance matrix is useful in quanti- g
fying the variability in the estimated parameters and :4G
is obtained from Equations (2.50), (2.54), (2.55), and L
(2.56) by substituting a = a = 1348, b = b = 0.124, and -
-~ 4,—':.‘3
the actual data values from Table 2.5. For data set DS1, 1;ﬁ;
we get }f-i
-y
2368 -0.2071 i
Leov . é
~0.2071 5.554 x107° .
From this we have N
e
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Figure 2.8.

o.n

ol2
PARAMETER b

ol3

0.4

Joint confidence regions for a and b

for Data Set DS1.
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Standard Deviation (a) £ vYVar (a)

E = 48.66
Standard Deviation (b) = /Var (b) = 0.00745
Correlation Coefficient (a,b) = ;; Q
’
- -0.2071 - -0.571 .
/ (2368) (5.554 x 107°)
[
- 2.8.6 Number of Remaining Errors
One useful quantity is the estimated number of re-
maining faults or errors in the system after some time ‘fﬂi
t. This value is obtained from Equation (2.19) as fff
. P e
E(N(t)} = a-e™Pt ]
L
or e
E(F(t)} = 134ge 0 124 R
) 1::i
A plot of this quantity is shown in Figure 2.9. 7fwi‘§
As expected, this value decreases with time. Also shown ';
. =
i is a plot of the "actual" number of remaining errors ' =
-
o
2-71 :
=
R
e




which is based on the assumption that all the errors
were detected during 36 weeks of operation. It should
be noted that this assumption is made for illustration
purposes only and, in general, this may not be the
case.

It would also be interesting to compute confidence
bounds on EN(t). Such bounds can be easily computed as
follows.

Let f£(a,b) denote EN(t). Then, it is well known
[ROH76, ROU73] that 100(l-a)% confidence bounds for

f(a,b) are given by

{£(a,b) * t

JV(E@,b)Y (2.83)

n-2;

where

e ]
V(f(a,b)) = (% g-;‘—)zcov % (2.84)
Y
b
a=;, b=£

and tn-z;a/z is the upper 100(a/2) percentage point of

the t-distribution with (n-2) degrees of freedom.
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n The 90% confidence limits for E{N(t)} for data set
DSl are computed from the above equations and are plot-

ted in Figure 2.9.

2.8.7 Software Reliability

As mentioned in Section 2.4, software reliability
is a commonly used performance measure to assess how
reliable the system is at various times. To compute
software reliability, we use Equation (2.36) and get

~

. (x|s) = e .
X 18y

This gives the reliability after time x starting from

the current time s. For example, starting from s = 15,

the reliability after 0.04 weeks, i.e., at s+x = 15.04, : ®-
Lol . .1
= is g
- 3
o - - -(.124)15__-(.124) (15.04) Cor ]
L R(0.04|s=15) = e 1348(e e ) R
3 Y
b - ]
El or
. 8
& L
” R(15.04) = 0.354.
L. .
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Figure 2.9. Expected number of remaining software

errors and related quantities for various
t (Data set DS1)
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To see how reliability varies with time, a plot of
ﬁ(x|s=15) is shown in Figure 2.10.

To obtain confidence bounds on reliability, we use
a procedure similar to the one used for getting bounds
on E{N(t)}. Let é(a,b) represent ﬁ(x|s=15). Then the
confidence bounds are given by

Wi(g(a,b))} , (2.85)

{g(a,b) 2 tn—2;a/2

where

o _ 499 9 9
Vig(a,b)) = (52 58) Igovf 52 (2.86)
2y g
db "
a=a
b=b

90% confidence bounds computed from these equations for

the given data are shown in Figure 2.10.

Analyses similar to those for data set DSl were -

undertaken for data sets DS2, DS3, and DS4 of Table 2.5.

A summary of the results is given in Table 2.7.
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TABLE 2.7

A SUMMARY OF DATA ANALYSES

Data Set
Quantity DS1 DS2 DS3 DS4
a 1348 1823 3958 3446
b 0.124 0.112 0.0768 0.0771
~  ~
/ Var(a) 48.7 62.2 147.3 136.6
A ~
J Var(b) 0.00745 0.00643 0.00460 0.035492
P -0.571 -0.648 -0.856 -0.855
a,b
Estimated Number of Remain-
ing Errors at the end of 209 338 1212 1050
Operational Demonstration
Number of Errors Detected
During Nine Months of 198 263 540 475
Operation

[P WA AP L S NN




. 2.9 ANALYSIS OF FAILURE DATA FROM COMMAND AND
Ly CONTROL SYSTEMS

In this section, we analyze software failure data
from two real-time command and control systems, SYS1 and
SYS2. These data sets were reported in [MUS380] and
represent failures observed during the system test phase.
The number of delivered object instructions for SYS1 was
21,700 and for SYS2, 27,700. The number of programmers
for SYS1 and SYS2 was 9 and 5, respectively.

For the first system, a total of 136 failures were
observed over 25 hours of execution time and for the
second system, the number of failures was 54 over 31 hours
of execution time. The observed number of failures per

execution hour and the cumulative failures are given in

Table 2.8. The number of failures per hour are plotted
in Figures 2.11 and 2.12, respectively. The parameters e

a and b were estimated using Equations (2.65) and (2.66)

of Section 2.5 and are

[ o 29
I

142.32 0.125

E sYs1 a

o 20
1

$YS2 a = 56.81 0.097 ™)

2-78
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FAILURES IN ONE HOUR (EXECUTION TIME) INTERVALS

TABLE 2.8

AND CUMULATIVE FAILURES

SYSsl SYS2
Hour No. Cum. No. Cum.
1 27 27 10 10
2 16 43 6 16
3 11 54 4 20
4 10 64 5 25
5 11 75 2 27
6 7 82 1l 28
7 2 84 1l 29
8 5 89 1l 30
9 3 92 0 30
10 1 93 1l 31
11 4 97 3 34
12 7 104 7 41
13 2 106 1l 42
14 5 111 0 42
15 5 116 0 42
16 6 122 0 42
17 0 122 0 42
18 5 127 [} 4e
19 1 128 0 46
20 1 129 1 47
21 2 131 1 48
22 1l 132 0 48
23 2 134 1l 49
24 1 135 1l 50
25 1l 136 1l 51
26 0 51
27 1l 52
28 0 52
29 1l 53
30 0 53
31 1 54
2-79
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The fitted models for the mean value function are: e

sysl m(t) = 142.32(1 - e 0-123%) “i.f}
]

: SsYs2 m(t) = 56.81(1 - e 0+097%) .
i. Plots of the observed cumulative failures and expected ,,N.J
i failures (ﬁ(t)) are shown in Figures 2.13 and 2.14 for ﬁ
SYS1 and SYS2, respectively. ;17;§
Observed number of remaining errors and expected ::g;j
- number of remaining errors were computed from (;—N(t)) i

and ;-e—bt, respectively, and are plotted in Figures
2.15 and 2.16 for SYS1l and SYS2, respectively. The 90% _-ft;a
confidence bounds for m(t) and E(N(t)) are also in B
Figures 2.13 to 2.16. From a study of these plots, it ﬂi
appears that the fitted models fit the data very well. li-ui;
Expressions for software reliability for the two : :E
systems are obtained from Equation (2.36) as ‘ ﬁ
. .' ° .
Rix|sm25) = e—lu2.32{e-'125(25) _ e-.125(25+x)} SO
R
and : -.:
Rex|s=31) = e—ss.al{e"°97‘3l) _ e-.097(31+x)}. ;-: .?
.
-
2-82

'J




CUMULATIVE NO. OF FAILURES
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FIG. 2.13 NUMBER OF FAILURES AND 90% CONFIDENCE BOUNDS (SYS 1)
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CUMULATIVE NO:. OF FAILURES
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Plots of these reliability functions for SYS1 and SYS2,
along with 90% confidence bounds, are given in Figures

2.17 and 2.18, respectively.
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2.10 ANALYSES OF VARIQUS TYPES OF ERRORS FROM A
REAL-TIME CONTROL SYSTEM

In this section, we study the failure data from a
real-time control system for a land-based radar system
developed by the Raytheon Company [WIL77]. It was de-
veloped in a modular fashion (a total of 109 modules)
and nearly all modules were written in JOVIAL/J3.
(JOVIAL/J3 is the standard programming language for Air
Force Command and Control Applications.) The rest of
the modules, chiefly the Executive program, were written
in Assembly language. The whole system has a total of
86,780 lines and 49,900 Assembly lines of code. The
software system runs in JOVIAL, Raytheon's multiproces-
sor computer which consists of two identical processors
(one utilized as a CPU and the other as an I1/0 control
unit), and 81,920 words of 24-bit core memory. The
software operates under the control of a highly central-
ized modular Executive program which supervises all real-
time activity on both the CPU and IOCU. The software
system features a common data base whose overall layout
is defined by means oé a COMPOOL. During compile time,
the JOVIAL compiler creates the necessary linkages for

operational programs to gain access to the data base.
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Testing of the software system proceeded in three
phases: unit testing of individual program modules, in-
cluding the Executive program; integration (build) test-
ing; and operational testing of the system in the field.
Unit testing was carried out on a Digital System simula-
tor rather than on the live computer in order to take
advantage of the simulator's extensive debugging tools.
On the other hand, integration testing, whose chief pur-
pose was to check out control and data interfaces among
program modules, was done on a real machine. Finally,
operational testing was performed on a series of in-
creasingly demanding missions designed to exercise the
system and evaluate its response under various loads
and physical environments. Operational missions were
first rehearsed in conjunction with a mission simulator,
then performed with a full hardware complement under

actual field conditions.

2.10.1 Error Data

Integration testing was responsible for the largest
number of Software Problem Reports (SPR's). The SPR
forms were filled by anyone (systems analyst, programmer,

or user of the software). SPR's were generated as soon
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as an error (problem) was identified and were not de-
layed until a solution was devised and tested. The

k! error data set used in validating the NHPP model was réavia

PR

derived from the SPR's only during the acceptance and

operational testing over a 22 month period during 1974-

1976. The data for the entire 38 month period will be r

- -,'.‘v‘,'. v

analyzed in Section 3.

The error data was categorized according to the

seriousness of the error as well as according to the oo

type of error as follows.

Seriousness of Error )

(1) Critical - if the error is impeding the pro-

ject development;

(2) Low - if it is not really necessary for a T,
correction to be made for the current develcp- Eiﬁn
ment to proceed; jia

(3) Improvement - if it is a suggestion for im- !,
provement but not necessary for satisfactory

i; operation;
I (4) Medium - of medium severity. -
The number of errors for this classification is
{ given in Table 2.9.
¢ » @
-]
2-92
!
{ —
' T
e ‘ e e ]




]
TYIOL L
A} }49A35 UNTPaW (4) umTipanW _
uoT3eaado
Kxojoezsties xo03 Axes (€)
-S909U 30U 3ng Juswssoxdur
303 uotasabbuns e sT 3II Juswasoxdwur . J
pasooxd 03 o
qusudoTsAsp JUSIIND dY3 IOF &
spew @q O3 UOT3IOSIIOD ®© I03F
oz 0| 8% LS Kxessooau AfTesx jou st 3T (z) mo1
juswudorsaap W
90°0 | €L 9s 30afoad bBurpadwt ST 3I | (1) TITITIO .
q e (syauow zz) bBur3ysely uoT3éTIOsad ///Mmmmwsoﬁumm o]
v v axem3Jos buranp pa3d939p - : 4
SIOXX® JO Iaqunu Tenlov T
E

SSANSNOIYAS 4O STIATT NO QIASVE VILVA d0¥dd !

6°C TI1EVL

PP P YUEr S S ST - S B

I SRR




Type of Error

Categorx

v B2 B U w

t

The total number of
given in Table 2.10.

Using the model and

Description of Error

Computational

Logic

Data Handling

User Requested Changes

Preset Data Base

Recurrent

Others, such as operating system/
support software error, routine/
system interface errors, user in-

terface errors, unidentified
errors, etc.

errors for these categories are

estimation technique of Sections

2.2 and 2.5, respectively, the estimated values of a and

b were obtained and are also shown in Tables 2.9 and 2.10

for each category of errors. Thus, for critical errors

the estimates are a = 73

NHPP is

{73 (1l-e

and 5 = 0.067 and the fitted

.067t

-.067t),y, ~73(1-e )

P{N(t)=y!} =

y!
y=0,1,... .
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Since the observed number of critical errors in 22
months is 56, this model indicates that 73-56 = 17 cri-
tical errors are still remaining in the system.

Plots of the actual and fitted values of the number
of errors for each category are given in Figures 2.19 to
2.22, respectively. Comparing the actual and fitted
curves, the NHPP model seems to provide a satisfactory

description of these errors.
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2.11 ANALYSIS OF FAILURE DATA FROM THE APOLLO PROJECT

Now we analyze the failure data from an on-board
Apollo space flight software project developed by the
Charles Stark Draper Laboratory, Inc. [RYD77]) during
the years 1967 to 1971. This software, with a size of
83,866 words, runs on the Apollo Guidance Comnuter (AGC)
(designed by MIT/IL) which was used throughout all the
Apollo, Skylab, Apollo-Soyuz, and F-8 Phase I programs.
The purpose of the AGC was to compute guidance, target-
ing, navigation, and connrol functions for the Apollo
space vehicle for all mission phases.

This software was developed by a group of guidance,
navigation, and control engineers, programmers, and test
engineers. The coding was done both in the assembly
language of the AGC and in the interpretive language
(INTERPRETER) developed for the project.

Testing and verification at the laboratory were per-
formed using various facilities, including engineering
simulation in the host computer, full scale digital simu-
lation on the host computer, and a hybrid laboratory and
system test laboratory that provided real-time execution.

Several levels of testing were performed:
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Level 1 tests were high order language programs

run on the host computer to test algorithms.

Level 2 was the AGC counterpart of these programs.
Level 3 was intended to verify the operation of a
complete program or routine including crew
interface and realistic physical environ-
ment models.
Level 4 testing was intended to verify mission phases,
e.g., ascent, redezvous.
Level 5 repeated the level 4 tests on the final rope
which was released for manufacture.
Level 6 took place after the ropes were released
for manufacture and were intended to veri-
fy the program using actual mission data
and the flight time-line. T
The hybrid and system test laboratories were exten-
sively used in parallel with digital simulation for
level 3, 4, 5, and 6 tests. Levels 1 and 2 were perform- -
ed exclusively on the digital or engineering simulators.

Changes to the software (as a result of software

errors) were controlled by the following documents: -
- Program Change Request (PCR)

- Program Change Notice (PCN)
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- Anomaly Report

- Assembly Control Board Request
The error data set which was derived from these documents e
was categorized according to types and is summarized in
Table 2.11.

The estimates of the model parameters for each cate-
gory and the total were obtained by the method of Section
2.5 and are given in Table 2.11. The likelihood surface
(for total errors) is shown in Figure 2.23 and a plot of - e
the contours of this surface in the (a-b) plane is given

in Figure 2.24. From these figures, we note that the

surface is really well behaved. ) f-1

Plots of the observed and estimated total number of ?
failures over the 35 month period are shown in Figures ?
2,25 and 2.26, respectively. Again, a comparison of the '.j

two sets of figures indicates that the model provides an

excellen. fit to the data.
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2.12 ANALYSIS OF DATA FROM A LARGE AVIONICS REAL-TIME

SYSTEM

The software from which this error (failure) data
is taken is a large avionics real-time system for DOD
developed by the Boeing Aerospace Company [FRI77}1. It
consists of 40,640 lines of JOVIAL/J3B instructions and
84,065 assembly language instructions. This system was
not developed in modular fashion.

The whole system consists of a controls and displays
subsystem, a hardware test monitor, two system functions,
and an executive system which schedules the former func-
tions. The software consists of 5 major functional areas
in the operational software and two functional areas in
the simulation software. The software was designed so
that, if one Avionic Control Unit breaks down, the sys-
tem can still provide the basic functional capabilities.
The simulator, which runs on two separate computers,
allows testing to take place in the laboratory.

Testing of this software began with Module Verifi-
cation Testing (MVT) performed by each modules developer.
No Software Problem Reports (SPR's) were issued during
MVT because, as far as configuration management is con-

cerned, the software was not released yet. Upon comple-
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tion of MVT, the developers released the modules for ’TVI“

formal testing. Formal testing began with Inter-Module

.‘;-‘7"'_'Hv"v T
i
Py

Compatibility Testing (IMCT) where the software was

checked against its functional requirements as a total Ny B

unit. Upon completion of IMCT, the software development
group gave the software system to an independent system
bt‘ test group for System Validation Testing (SVT) where '“‘.‘J
i" acceptance testing for quality control purposes was per-
'f- formed. When an error was discovered during testing,

;' the usual procedure was to patch the program. Software - ?'4
errors were documented on software problem reports (SPR) »

while requirement errors were reported on Design Change

Requests. The data set obtained for this analysis was S
from the two formal test phases and was both from the
operational and simulation software for the first two

versions (called blocks) of the software system. : e

. .
3T WO S S )

Time to fix an error was calculated based on the
number of days an SPR was open and an assumed 8 hour/

day of equipment use to fix. This 8 hours was divided S 3

up among the errors open on any one day, and this frac-

tional time was summed up over the days the SPR was

T. open, to give the final total time spent fixing an i
&
- error.
' @ v
- Y
1
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The error data set for the analysis was collected

during the period October 1974 to August 1975 on a

monthly basis. The errors were categorized into the

following groups:
(1) Critical
(2) Low
(3) Improvement
(4) Medium

(5) Other

The total number of errors for each severity

level

over an eleven month period and the corresponding esti-

mated values of a and b are given in Table 2.12.

Plots

of the observed and fitted number of errors are shown

in Figures 2.27 and 2.28, respectively.

Again, the model

appears to provide a very good fit to the failure data.
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TABLE

2.12

T T

Severity

Total Errors

>

A

b

Critical
Low
Improvement
Medium

Other

28
51
211
357

780

33.40
63.20
260.02
501.99

1031.43

0.1657
0.1495
0.1517
0.1129
0.1283

TOTAL

1427

1880.71

0.1293
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SECTION 3

SOFTWARE FAULT OCCURRENCE PROCESS WITH

INCREASING/DECREASING ERROR DETECTION RATE -

3.1 INTRODUCTION

As discussed earlier, many stochastic models have
been developed during the past ten years to describe the
fault occurrence phenomenon in a large scale software .
system. Most of these models are based on the assumption
that the time between system failures follows an exponen-
tial distribution with a parameter that depends either on .
the number of faults remaining in the system or on the
elapsed execution or calendar time. A summary of these
models and a comparative list of the features of some of
these models was given in section 1.5.
All the models that have been proposed to date make
an important assumption about the monotonicity of the
software failure rate. In particular, it has been assumed
that the software system experiences an improvement with
time. In other words, the existing models assume that
the software has a decreasing failure rate (DFR). However,
in practice, it has been observed that many software sys-

tems first experience an increasing failure rate (during
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the initial phases of integration) and then follow a de-
creasing failure rate.

In this section we develop a new model which incor-
porates this dynamic behavior of the software systems.
The basic model is presented in section 3.2 and various
software effectiveness measures are developed in section
3.3. Software reliability and related results are given
in section 3.4. Methods for estimating the parameters
of the model from software failure data are described in
section 3.5. Analyses of software failure data from a
large scale system and the Naval Tactical Data System are
presented in sections 3.6 and 3.7, respectively.

Data sets from numerous other systems were analyzed

to assess the applicability of this model. Also, goodness-

of-fit tests were conducted following the method discussed

in section 2.6. Details of these analyses and tests are

not reported here for the sake of brevity. In all of the

cases studied the model reported here was found to provice

an excellent fit to the observed failure history.
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3.2 MODEL DEVELOPMENT

In order to develop an appropriate model, we study
the stochastic behavior of the fault detection phenomenon
by focusing our attention on the number of faults detect-
ed by some arbitrary time t. Let N(t) denote the number
of faults detected by time t and let m(t) be the expected

value of N(t), i.e.,

m(t) = E[N(t)] . (3.1)

The above function m(t) is called the mean value function
of the N(t) process. It should be pointed out that here
time t can be calendar time, execution time, or any other
suitable and consistent measure of time. In practice,
however, we have found calendar time and CPU time as the

commonly used measures,

3.2.1 Assumptions

We now consider the behavior of the software fault
detection process as described by N(t).
(i) There will be no faults detected at the begin-

ning of the fault detection process, i.e., we




(i1)

(iidi)

have N(0) = 0. Also, this implies

m(0)

0. (3.2)

It is quite obvious that the software system
must contain a finite number of faults. 1In
other words, if testing were to be continued
indefinitely, the number of faults to be de-
tected will be finite, so that the expected
number of faults to be eventually found will

be m(«). Let

m(e) = a < =, (3.3)

The faults to be detected are such that each

one effects the failure occurrence phenomenon

independently of others, but the rate at which

each fault causes the system to fail depends
on elapsed time. This can be expressed by
taking the hazard rate z(t) of each fault to

be

z(t) = bect® . (3.4)
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3.2.2

Note that the shape of this function will de-

pend on the values of the parameters b aund c.

Expression for m(t)

PSP CN |
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Based on the above description of the fault detec-
tion process, we now develop an expression for m(t). In

terms of m(t), the hazard rate at time t is defined as

m(t+At) - m(t)
At{a~m(t) } :

z(t) =

Substituting for z(t) from Equation (3.4), we get

nm(t+it) - m(t) _ c-1
Atla-m(n)) - Pet T - (3-3)

By letting At » 0 in the above equation, we get a first-

order linear differential egquation

m' (t) + betS In(t) = abct® 1 . (3.6)

To solve the above equation for m(t), we need to

use the following results.




Lemma. If P(t) and Q(t) are two continuous functions

of t, then the general solution of an equation of the

form

y' + P(t)y = Q(t) (3.7)
is

Y = gy Jo®h(vat, (3.8)
where

h(t) = _[P(t)at . (3.9)
Proposition. Under the boundary condition m(0) = 0,

the solution of equation (3.6) is given by

C

bt™y (3.10)

m(t) = a(l-e

Proof. Let the functions P(t) and Q(t) in the above

Lemma be

3-6
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P(t) = bct

1

0(t) = abct® % .

Then h(t) is obtained from (3.9) as

h(t) = efP(t)dt
or

h(t) = &Pt (3.11)
and

fa(t)n(t)dt = jabctc‘lebtcdt
or

fo(e)h(t)dt = aePt 4 k | (3.12)

where k is a constant to be determined by the boundary

condition m(0) = 0. Finally, we get the solution of

3-7
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(3.6) by substituting (3.11) and (3.12) into (3.8),

i.e.,
n(e) = e Pt (aePt" 4
or
m(t) = a + ce—btS - (3.13)
Since m(0) = 0, we have
m(0) =a + k=0
or
k = -a .
Substituting k = -a in (3.13), we get the result of

Equation (3.10).

3.2.3 Fault Detection Rate

Fault detection rate is the number of faults per

unit time. Let ) (t) denote the software fault detec-

3-8
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tion rate so that, for a small time interval At, A(t)at
represents the number of software faults detected during
(t, t+At). Now m(t) is the expected number of faults

detected by t and
A(t) = m'(t) . (3.14)

From Equations (3.10) and (3.14), we get

o] --btcc c-1

a(t) = abt™r t

or
_ _aeY

A(E) = atY™1 . o7BE (3.15)
where

a = abc

B =Db (3.16)

Yy =¢C

In order to see the shape of the fault detection rate
A(t), we differentiate Equation (3.15) with respect to

t and equate the result to zero and get

3-9
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LY = l%i . (3.17)

We see that, for r > 1, A (t) is a unimodal function

with
(0 =A(“")=0 ’
and its maximum value occurs at t = tm where

_ (x~1,1/y
tm = (‘E7) . (3.18)

The maximum value of A(t) is
maxA () = At ) = a(l%%)(Y—l)/Y c e DY (3010

In other words, the error detection rate of software or,
equivalently, the software failure rate, increases dur-
ing the period (O,tm), achieves its maximum value A(tm)
at t = tm’ and then decreases for t > tm eventually be-
coming zero at t = =, Note that if 0 < y < 1, then the
software failure rate is monotonically decreasing. From
the above discussion, we see that the software fault de-
tection rate A (t) is increasing/decreasing if r > 1, and

monotonically decreasing if 0 < y < 1.

3-10
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The extreme values are A{(0) = a for vy = 1 and X (0)

for 0 < y < 1.

3.2.4 Failure Counting Process

Now we assume that the failure counting process N(t)
has the following characteristics:
(1) N(t) has independent increments, i.e.,
{N(tz) - N(tl)} is independent of

< t, < t,.

1 2 3
(ii) The probabilities associated with the N(t)

{N(t3) - N(tz)} for some t

process are as follows:

0 with probability
1-a(t)at + 0(at)

N(t+At) - N(t) = 1l with probability (3.20) ' j
A(t)at + 0(At)
2 with probability

0(At) .
L J
- -1

It is well known that with the above properties and with
A(t) as given in Equation (3.15), the N(t) process is a 1
v
non-homogeneous Poisson process (NHPP) with a mean value .
function m(t) given in Equation (3.10). Hence, the dis- BN
tribution of N(t) is given by ) o)
- -
1

3-11
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P{N(t) = y} = {—“‘-(;—),}—- c e (3.21) NS

Under the assumptions discussed above, the stochastic

R B
behavior of the software failure phenomenon can be com- :

pletely described by the model given in Equations (3.10)

f‘ and (3.21). These equations constitute the basic fail-
- .d
! ure occurrence model discussed in this section. o
| ]
:- E
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- .'J
1
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3.3 SOFTWARE EFFECTIVENESS MEASURES

In this section, we develop expressions for several
useful quantitative measures for assessing the software

system effectiveness.

3.3.1 Distribution of the Number of Faults Detected
or Failures Observed

As indicated above, N(t) is a NHPP with a probability

mass function

c X
_a"btToy L _."bt
P{N(t) = y} = {a(l ey' )37 g-all-e )'
y =20,1,2,... (3.22)
As t » =, we have
a¥ -a
P{N(co) = y} = F e , Y = 0'1,2’.” (3.23)

This last expression tells us that, if the system were
to be used for a long time (t = =), the number of faults
detected or failures observed during this time follows

a Poisson process with mean ‘'a‘.

3~13
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3.3.2

Number of Faults Remaining in the System

Let N(t) denote the number of faults not detected

by time t, i.e., the number of faults remaining in the

system.

tracting N(t) from N(«),

eventually detected.

Clearly, this number will be obtained by sub-

random variables. Thus, we have

and

or

or

N(t) = N(») - N(t)

E[N(t)] = E[N(=)] - E[N(t)]
(o
E[(N(t)] = a - a(l-e PY)
C
E[N(t)]) = ae-bt .
¢
3-14

the number of faults to be

Note that these quantities are

(3.24)

(3.25)
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3.3.3 Conditional Distribution of N(t)

If we have already observed y faults, it is useful
to know the distribution of the number of faults yet to
be detected. 1In other words, the conditional distribu-

tion of N(t), civen that N(t) =y, is

P{N(t) = x, N(t) = y}
P{N(t) = yJ .

P{N(t) = x|N(t) = y} = (3.26)
Now the event N(t) = x denotes occurrences over the time
interval (t,~) while the event N(t) = y denotes occur-
rences over the interval (0,t), i.e., these two events
represent non-overlapping time intervals. From a basic

" property of the NHPP process, such events are independent

25 of each other, so that we have
»
3
!
p

P{N(t) = x|N(t) = y} = P(N(¢t) = x}, x=0,1,2,... (3.27)

or
(]
P{N(=) - N(t) = x|N{t) = y} =
{m(=)-m(£)}* _ _-{m(=)-m(t)}
e x! €

Or, substituting for m(~) and m(t) from Equation (3.10),

e we get

s A




P{N(=) - N(t) = x|N(t) = y} =

C C
{a-a(1-e PP )1¥  _{a-a(1-e"Pt )}
X1 * e
This vyields
-bt€ . x -bt€
P{N(t) = x|N(t) =y} = 38 17 -ae . (3.28)

Finally, the expected number of faults to be detected,

given N(t) = vy, is

E[N(t) |N(t) = y] = ae . (3.29)

3.3.4 Joint Counting Probability

The property of independent increments, along with
the equations developed above, provides a complete
statistical characterization of the NHPP process so that
the joint probability of certain number of faults occur-
ring in given time intervals is obtained as follows.
Consider times tl't2""’tn such that 0 < t, < t, <

1 2 .o
< tn. We have, with to = 0, Yo = 0,

3-16
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PIN(t)) =y , N(ty) = yy, «oop Nt =y)
n
= iilp{N(ti) - Nty _q) = yimYy ) (3.30)
YiT¥i-
_ o miepomie; ) o imlEg)omlEy )
i=1 (¥;=¥i_q)!

Equation (3.30) will be used for estimating the para-

meters a,

sections.

b, and ¢ from given failure data in later

'.*.
P
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3.4 SOFTWARE RELIABILITY AND DISTRIBUTIOWN OF TIME

BETWEEN SOFTWARE FAILURES

The time between failures is a stochastic process
whose behavior is governed by many factors such as the
usage of the system, system load, degree of purifica-
tion of software, etc. However, since it is not pre-
sently feasible to gquantify the effects of these fac-
tors individually, we model the process behavior as
described above, i.e., by a NHPP process with an in-
creasing/decreasing fault detection rate. At any given
point, the time to next failure will depend on the time
when the last failure occurred. Suppose that the (k-1)st

failure occurred at some time S Then the prob-

k-1~ S°
ability that the kth failure will not occur for an addi-

tional time Xk = x, i.e., the conditional probability

for time x, is as follows:

P(no failure in (s,s+x'|failure at s)

R

% (x|s)

x |Sk-1

and

—a{e-bs _e-b(s+x) }

i
o]

(x|s) = e
k-1

(3.31)
k
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Since the conditional cumulative distribution function

(cdf) is related to conditional reliability by

F (x|s) =1-R (x|s) , (3.32)
X I8g 1 Xy 181
we have
—ara-bsC__-b(s+x)€
Py |s. | xls) = 1= gale e Y. (3.33)

k'"k-1

The conditional probability density function (pdf) is
obtained from Equation (3.33) by differentiating
Fy s (x|s) with respect to x and is given by

k'"k-1

bs®__-b (s+x)°

b

- c- -
£ (x|s) = abe (s+x) S le b(s+x)~ -ale
Xy 8y

(3.34)

Finally, we are also interested in the joint pdf of the
cumulative times to failures, i.e., in the joint pdf of
Sl’SZ""'Sn‘ Following the approach given in Section 2,
we get

-m(s_) n

= e noq A(s
k=1

£ (3.35)

sl,sz,...,sn‘51'52'°'°'9n) )

where

3-19
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1
o

m(sn) ’ (3.36)

Y]
P

A

S AT

and

Yo
D)
‘e
-
s

N

A(s (3.37)

x
I
1]
0
w
o

or
A(sn) = abc +* s - e no. (3.38)

These results are used for estimating the parameters

a, b, and ¢ in later sections.

3-20

AT TR T AP T N T R oL . - TLTw

-’ a . T e ST A . T . P VT T U Wt . RSN Y
” p ottt - - . sy ta - . " P I L PR
A TP W ULAP AP Pl S Sl i, Gt S S e ) Py - 2 "




3.5 ESTIMATION OF MODEL PARAMETERS FROM FAILURE DATA

In this section, we describe methods for estimat-

ing the parameters a, b, and ¢ (or, equivalently, o, B8,

and y) from available data on software failures. Such
data are generally available either as cumulative number

of failures in given time intervals, or as times between

software failures. The estimation procedure is differ- '“"'t}
ent for each case and is described below. In this re- ;
port, we use the method of maximum likelihood for esti- f-?i;j

r'.'.'.'.;‘ -

mation purposes. o

3.5.1 Maximum Likelihood Estimation When Data on
Cumulative Software Fallures are Given

Let y, be the number of failures observed during a

time interval (O,tl), Y, during the interval (O,tz), and
so on. In general, let Y be the number of failures by

time ti. Then the observed data in this case will con-

sist of apirs (ti,yi), i=1,2,...,n. llow the probability
of observing (yi-yi_l) failures during a time interval

(ti-ti_l) is given by (see Equation (3.30)),

PIN(e;)=N(ty ) = ¥;37¥;4)

(3.39)

¥i7Y;.
m(e)-m(t; )Y TP feme ) ome, ) ).
= e

(¥i7¥3.,)!
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Since the increment in the number of failures during
the non-overlapping time periods (O,tl), (tl’tz)""'

(ti-l'ti)""'(tn-l’tn)' are independent of each other,

the joint probability of the pairs of observations :'Ef;
(tlvyl)r (tzlY2,l"'l (tnryn): P{N(tl) = yl' N(tz) = YZI —
ewsN(t) = y,,...,N(t ) =y}, can be written as ;;:i;
P{N(tl) = Yl} ’ P{N(tz-tl) = Yz-yl} feeey \
e .o -0"I
_; P{N(t.~t. ;) = ¥;=¥;_q}reees ;
h PIN(t -t ) = ¥y~ ¥n-1}
o n
2 = 1 P[N(t;-t. ) = y.=y:_,]
5 i=1 i "i-1 i 4i-1
F! Y-y >
" n {m(t.)-m(t. Y ?* i-1 -.E {m(ti)-m(ti-l)}
.- = 1 i i-1 e i=1 ,
t i=1 (yi-yi-l) !

or

P{N(t;) = y;,N(ty) = ¥y, N(E)) = Y}

Yi<Ys_ 4
n {m(t)-m(t; N} E T omee) N
= T =71 e . (3.40) s
i=1 ifi-1 e e g |
RIS
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From this, the likelihood function for parameters
a, b, and ¢, corresponding to the observations (ti,yi),

i=1,2,...,n, is obtained as

L(a,b,c| (ty,¥{) s (ty,¥0) seee, (t_,¥.))
1’4] 2742 n’fn

Yi7Y; o
_opmiomeey )Y T omee)

_ e . (3.81)
i=1 (¥37¥;_)1

Taking the natural logarithm on both sides of EQuation

' (3.41), the log likelihood is obtained as

%(a,b,c|(t;,y;),i=1,2,...,n) = 2n L(a,b,c|(t;,y;),

, i=1'2'--c'n)
$ n
i=]
n
- m(tn) - iilzn(yi-yi_l)! (3.42)

On substituting for m(ti_l), m(ti), and m(tn) from Equa-
tion (3.10), and simplifying, the log-likelihood function

becomes




T i il el SafiCRiadiy

*(a,b,c|(t;,y;), i =1,2,.../n)

c c
n -bt- -bt-
-1 i
= ¢ (y,~y;_,)tn{ae *"" -e )}
i=1 i fi-1l
-btﬁ n
- a(l-e ) - iilzn(yi-yi_l)! (3.43)

It is well known that the maximum likelihood esti-
mates (mle's) ;, 5, and é, are those values of a, b,
and c, respectively, that maximize the likelihood func-
tion given in equation (3.42), or equivalently, are
those values that maximize the log likelihood function
Thus, ;, B, and é are those values

of Equation (3.43).

that simultaneously satisfy the following equations:

L M
>

33 - 0. (3.u448)
AL _
E’ 0 . (3-“5)
9L _
3e = 0 . (3.46)

On taking the derivatives of Equation (3.43) with re-
spect to a, b, and ¢, and substituting in Equations

(3.44), (3.45), and (3.46), respectively, we get the

3-24
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following non-linear simultaneous equations:

-btﬁ
Yo © a(l - e ) (3.47)
c c
=bt; -bht;
e N N A T G S L
atne = I e - ’ (3.48)
(e - e )
and
c
-bt
c n
atn(zn tn)e
-bt$ -bt$
c i_.,c - i-1
_ ? (Y;-¥;_9) {t (ent;)e t{_,(ent;_,le }
- c c L)
J-=1 -bt . -bt .
(e i-1 _ e 1)

(3.49)

The set of simultaneous equations (3.47), (3.48), and
(3.49) can be solved numerically for a, b, and ¢. The
solution will be the required maximum likelihood esti~

mates a, b, and ¢ of a, b, and ¢, respectively.
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3.5.1.1 Variance-Covariance of a, b, and c

Once the estimates of a, b, and ¢ have been obtain-
ed from the data, the performance measures, as derived
in sections 3.3 and 3.4, can be easily computed by sub-
stituting ;, 5, and é for a, b, and ¢, respectively.

In order to obtain confidence bounds on the performance
measures, we need to know the distribution of the esti-
mates ;, 5, and é. For a reasonably large sample size

n, say n > 20, the maximum likelihood estimators general-

ly follow a normal distribution. Thus the vector (; b é)'
will have a trivariate normal distribution (TVN) with

(a b c)' as the vector of means and ooy 28 the variance-
covariance matrix. In other words, for large n,

a a
~
b TVN b v Ieovlt (3.50)
c c
The variance-covariance matrix zcov represents —
Var (a) Cov(a,b) Cov(a,c) ik
' .'_,‘.: ~'
zcov = Cov(b,a) V(b) Cov(b,c) (3.51) T
Cov{c,a) Cov(c,b) Vic) .
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and is given by

-1
raa rab rac

Loov = Tba Tbb Tbe (3.52) ~?‘ :Y

Tca Teb Lec kﬁff%f
=
where ) 1 5
a2y ' SR

iy < '3[313;1 , i,3=a, b, c. (3.53) .

Thus, to obtain zcov' we first take the derivates of
Equation (3.43) and then the expectations of the result-
ing expressions, ad indicated by Equation (3.53). On

so doing, we get the following expressions for various

r. .'s, i,y =a, b, c.

i,J
C C
n —bt . -bt o
r,, = % (e TTl-oe 1 (3.54)
i=1
-bt°
r, =r._ =te D (3.55)
ab ba n
-bt€
r =r = btc(znt e n (3.56)
ac ca n n
3-27
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(3.57)

-bt

- (1-bt5) (e i-1_

(3.58)

and

n b(1-bt) 2§ (ent,)e
r = ab I
ce i=1 -bt;

- ab
i

o3

c c 2
l(l-bti)[ti(znti) e

-bt
- -htC14+C 2 n
ab (1 bt )t (int )7e . (3.59)
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The variance-covariance matrix L, is obtained by sub-

ov
stituting the appropriate values from Equations (3.54)
to (3.59) into Equation (3.53). Confidence bounds on
the performance measures can then be computed by using

the properties of a trivariate normal distribution.

3.5.2 Maximum Likelihood Estimation of Parameters When
Data on Times Between Software Failures are Given

Sometimes failure data are given as a sequence of
failure times SyrSyrecerSy where Sy k=1,2,...,n, rep-
resents the time of the kth failure. Using the joint
density of Sl’SZ""'Sn’ as given in Equation (3.35),
the likelihood function of a, b, and c for given data

31,52’000’811 1s

L(a,b,clsl,sz,...,sn)

-bs

heC
- e-a(l-e bs

n
H(abc){sﬁ-le ky L (3.60)
k=1

o))

As before, the maximum likelihood estimates are
those values which maximize the likelihood function of
Equation (3.60). Since maximizing the likelihood is
equivalent to maximizing the log-likelihood function,
we take the natural logarithm of Equation (3.60) and

get
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Y
h-j-/‘ 0.'-‘
z(a,b,clsl,sz,...,sn) z %n L(a,b,c]sl,sz,sn)
n o
= n4na + n&¢nb + ninc + (c~1) & znsk . A
k=1 !
n . -bsg S
- b I Se ~ a(l-e ) . (3.61) ; Lo
k=1 '

Then, the mle's are those values a, b, ¢ which satisfy

the following equations: ~ g
C

g S ]

" 1""

2% _ A

"8_5 - 0 ’ (3-63) .‘;

e o . (3.64) ‘:.

On taking the derivatives of Equations (3.61),

(3.62), (3.63), and (3.64), respectively, e
]
-bs® R
X n=af(l-e )y (3.65) ERRIY
r S
- e
- n=>bl{ I s +ase b (3.66)
3 . k=1 . 1
[ - and T
o L
- }
2= 3-30 ]
[ )
Eir ol
- - ) ‘i




n n c c -bsﬁ
n+c?tg 9.nsk = be{ I sansk + as_(ins e }
=1 k=1 n n

The above simultaneous, non-linear equations can be
solved numerically to get the maximum likelihood esti-
mates ;, ﬁ, and é.

Since the joint distribution of (sl'SZ"“’sn) is
an improper distribution, as discussed in section 2,
the asymptotic properties of the mle's do not hold in

this case.
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3.6 ANALYSIS OF FAILURE DATA FROM A LARGE SCALE
SOFTWARE SYSTEM

Failure data generated during formal testing of a

large scale software system [THA76] was analyzed in

section 2.8 using a two parameter non-homogeneous Poisson

process model. In that analysis, the data from the
first 9 of the 24 weeks of testing had to be dropped
because during this period the system exhibited an in-
creasing failure rate. The model developed in this
section is capable of modelling an increasing/decreas-
ing failure rate and will be employed to develop a
model for the failure data over the entire 24 week
testing period.

The number of failures per week for the four data
sets are given in Table 3.1 and a plot for data set DS1
is shown in Figure 3.1. It is readily seen that the
failure rate increases for about the first nine weeks

and then decreases until the end of testing.

3.6.1 Estimation of Parameters

The data are given in the form of point (ti,yi),
i=1,2,...,24, where ti and Y refer to time in weeks

and Y; is the number of failures in week i. To esti-
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Fig. 3.1 A plot of the observed number of failures per week for Data Set DS1
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B
mate the parameters a, b, and ¢, we use the method of -"?
section 3.5.1 and substitute the data values for each o fi
set in Egquations (3.47), (3.48), and (3.49). The esti- :;;%F
mates ;, ﬁ, and & for the four sets are given in Table ' :;E
3.2. and the fitted mean value functions for the four ‘ ‘n?
data sets are as follows | Fé;éﬁ
: ]
3 R
DS1: m(e) = 2352(1 - &=-023260 7, S
- DS2: a(e) = 287301 - o~-018267 710, SO
;
DS3: m(t) = 5182(1 - e~-0135¢7°7Y7
DS4 : n(t) = 4657(1 - e=-0156€1 %%
A plot of the cumulative number of observed soft-
ware failures is given in Figure 3.2 and the expected
cumulative number of failures (ﬁ(t)) for each data set
are shown in Figure 3. 3. é;f;iﬂ
‘ﬁ%ﬁ
Rt
T
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3-35 |
o

. - A e o b - Al e e Al e _—— AT P LA LI DA WL TGS N




3-36

.-E-ﬁ e © LA G N R N Al A ) AR i) i A Sag s ent e
00 SRR,
2 e
. ".‘
TABLE 3.2 B
A SUMMARY OF DATA ANALYSIS FOR DS1-DS4 s
N ) "4_ N b
Quantity Data Set| DSl DS2 DS3 DS4 '
2 2352 2873 5182 4657 e
b 0.0232 | 0.0182 | 0.0135 | 0.0156 2
G e e
a PRI
c 1.494 1.540 1.547 1.505 SRR
J var(a) 55.4 65.3 118.0 | 110.5 g
J Var(b) 0.00188 | 0.00143 | 0.00086 | 0.00101
v Var(e) 0.0354 | 0.0345 | 0.0297 | 0.0304
Palb 0.184 0.224 0.286 0.273
Pae -0.320 | -0.391 -0.584 | -0.579
Pb.e -0.916 | -0.914 |-0.876 | -0.868
Number of Errors Detected
(Observed) During Operation- 198 263 540 475
al Demonstration Period
Estimate of the Number of ro
Errors to be Detected Dur- 16 o
ing Operational Demonstra- 1 252 812 n7 -v—q
tion Period o]
By
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FIGURE 3.2. Plots of the Cumulative Number of S
Software Failures for DS1 to DS4. e
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3.6.2 Confidence Bounds R

By using normal approximation to a Poisson in Equa-
tion (3.22) we compute the 90% confidence bounds for the ¥:;iF
N(t) process. The estimated mean value function and 90%
bounds for data set DS1 for the N(t) process are plotted
in Figure 3.4. From this figure we see that most of ;:2%.¢
the observed points fall within 90% bounds implying that iiﬁffj
the model described in Section 3.2 fits the entire his- |
tory of software errors very well. The number of re- ¥;;iﬁ
maining errors at t = 24 (weeks), given that 2191 errors A
were found by this time, is estimated from Equation (3.25) ;ii}f}
and we have ;;;Q-F

1.494

-.0232(24) - 161.9

E[N(24) |[N(24) = 2191) = 2352e

Note that a total of 198 errors were detected during the

one year period of operational demonstration so that the

predicted number is close to the actual value. The

variance-covariance matrix is obtained from Equation (3.51) _"f;}
: SRS

and is SR
g

3067 0.0191 -0.627 —

s -6 _ -5 o

Loov = 0.0191 3.53x10 6.09x10 S
~0.627  -6.09x10"° 1.25x107> S

. "'
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FIGORE 3.4. Estimated Mean Value Function and 90% e ]
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From this matrix we obtain the estimated standard devi- *‘?‘35
ations and the appropriate correlation coefficients for i?t‘ii
;, l;, and c. These values for data sets DS1 to DS4 are ..'4:1
also shown in Table 3.2. By using the above variance- r*;41ﬁ

covariance matrix we can also obtain 100 (1-a)% confidence

bounds for EN(t) which are given by

{f(a,b,c) t t / Var (£(a,b,c,)) }

n-3;a/2
' where L
- i
- . £ 3f of of
“' Var{f (arbIC) } = (%; ‘g"g S—C‘)Zcov a—a'

3 roed

b e Ao S

.a_f -

ac ~

a=a
b=b b L &
& c=c ‘i:i
- © T
e For this case we have ' "*61
- v
. T
= f _ e-btc ST
»_ 3a 'i
- _.+C. bt

— % - at’e _— -...'
] 3f _ c -bt€ ]
. 3¢ = -abt” (2nt)e L
by S
[ T
4 3-41
f. b Y
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The 90% confidence bounds for EN(t) for data set DSl are
computed from the above equations and are shown in Figure
3.5. Also shown is a plot of the actual number of re-
maining errors during the 24 week period. From this fig-
ure we see that the actual errors fall within the 90%
bounds.

Similarly, by setting

~

£(a,b,c) (x|s)

11}

R
X I8

A A

~ _nC o c
e-a{e bs™ _ ~b(s+x) }

we can estimate the software reliability for given de-
bugging time s.

The 100 (l-o) % confidence bounds on R (x]s)

Xy ISy -1
can be obtained as for EN(t). The reliability plots

and 90% confidence bounds for DS1 are shown in Figure

3.6.
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FIGURE 3.6. Reliability Function and 90% Confidence
Bounds (DS1).
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! 3.7 ANALYSIS OF FAILURE DATA FROM NAVAL TACTICAL
' DATA SYSTEM (NTDS)

Failure data from NTDS were analyzed in Section 2.7
!! using a two parameter NHPP model. 1In this section we

ﬂ; reanalyze the same data by using the three parameter
- NHPP model of Section 3.2. (For details of the system
and data set, see Section 2.7.) Data analysis using
the Newton-Raphson method for solving the likelihood
estimates of a, b, and ¢ based on the first 26 failures

of Table 2.1, we get a = 27.2, b = 0.000783, and ¢ =

1.50 so that

n(e) = a(-ePt) 1
S
= 27.2(l-e-0'000783t1.5) . :?";1
o
T
The bounds of the N(t) process can be obtained by using ‘yi
normal approximation to a Poisson distribution of Equa- ‘ﬁ
é’ tion (3.22). The estimated mean value function and 90% T
E: -~ bounds of the N(t) process for this data set are shown R
:f; in Figure 3.7. Also shown is a plot of the actual num- ;‘ ?;}
;' ber of errors detected by time t. From this figure we e
q see that all the data points fall within the 90% bounds.
E;‘ We can estimate the expected number of errors remaining
' -
I
- 3-45
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FIGURE 3.7. Estimated Mean Value Function and 90%
Confidence Bounds for the N(t) Process
(Data Set NTDS).
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at time t by substituting the mle's in Equation (3.25),

i.e.,
N ~ _aC
EN(t) = ae bt
or
- 105
EN(t) = 27.2e_0'000783t .

Thus for t = 250,

EN(250) = 1.23 .

That is, we can expect one more error remaining at t =

250 (days). The conditional reliability of the time to

the next (27th) failure, given 826 = 250, is computed

as
4
-~ ~ " ~ PR .J
» - _a(e~P(250%) _ -b(250+x), R
. Ry s (x|250) = e . ]
. 27'726 ]
. _27.210 0u53_e-0.000783(250+x)1'5} i
X =e °°° : : ‘ o
o ““i?
;\ For the values of x = 10, 20, and 50 (days) the reli- jf}
ﬁi ability values are 0.81, 0.68, and 0.46, respectively. };}
p - - - oo
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SECTION 4

OPTIMUM SOFTWARE RELEASE TIME

4.1 INTRODUCTION

An important objective of developing the models in
Sections 2 and 3 was to provide an analytical framework
for estimating software performance measures which are
needed for making various decisions. An important de-
cision of practical concern is the determination of the
time when testing can stop and the system be considered
ready for release, that is, the determination of the
software release time.

The operational performance of a software system is
to a large extent dependent on the time spent in testing.
The longer the testing phase, the better the performance.
Also, the cost of fixing an error is generally much less
during testing than during operation. However, the time
spent in testing delays the release of the system for
operational use and incurs additional cost. This suggests
a reduction in test time and an early release of the sys-
tem. In this section, we consider these conflicting ob-

jectives in the determination of the optimum release time.
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In Section 4.2 we consider the release time prob-
lem based on a reliability criterion using the model of
Section 2. Cost based optimum release time policies
are developed in Sections 4.3 and 4.4 when the failure
phenomenon follows a non-homogeneous Poisson process.
The policy in Section 4.3 uses the model of Section 2
while the policy in Section 4.4 is for the failure model

of Section 3.
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4.2 SOFTWARE RELEASE TIME BASED ON RELIABILITY CRITERION

For a non-homogeneous Poisson process failure model,
the conditional reliability at operational time x, given

that the testing has proceeded for S = s time units, is

given by
Rx|s(x|s) = R = exp[-a(e-bs - e-b(s+x))] (4.1)
or
R = exp[-m(x)e "], (4.2)
where

m(x) = a(l - e~bx

) . (4.3)
One commonly used criterion is to stop testing when
the predicted reliability at a specified time x equals
some given value. Then the problem reduces to solving
(4.2) to find the value of s that satisfies this cri-
terion.
Taking the logarithm of both sides of (4.2) and

rearranging yields

. -~ 4
!

: 4

) R b
-
R
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s = (1/b) [e¢n m(x) - ¢n n 1/R] (4.4)

for the software system under test. In (4.3) and (4.4),
a and b are estimated from previous data and R and x are
the specified values. Therefore, the required testing
time s can be easily determined.

For illustration purposes, consider the failure
data DS1 discussed in Section 2.8. For this data set
a = 1348 and b = 0.124. Suppose it is desired that the
testing be continued until the operational reliability
at x = 0.1 equals 0.70. From (4.4),

e = (1/0.126){2n[1348 (1- 0-128(0.1)y,

- %n &n(1/0.7)1},

or s 31 weeks.

In other words, 31 weeks of testing will be needed
before the system can be released to assure the desired
reliability.

To see the effect of s on R(x|s), plots of reli-
ability versus bs for m(x) = 5(5)50 are shown in Figure

4.1. We note that, as the testing time s is increased,

while keeping x, and hence m(x), constant, R(x|s) in-

R B
. .fi

D
B—
-t _."4
K




.....

R(x!s)

Fig. 4.1 Plots of reliability versus bs for m(x) = 5(5)50. T
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creases very rapidly to approximately 0.95. After that,

the increase in reliability is very slow, which indi-

cates that a long testing time is required to get a

highly reliable software system.
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4.3 OPTIMUM RELEASE TIME BASED ON COST CRITERION
(MODEL OF SECTION 2)

To determine the optimal policy, we first develop
a cost model and then solve it to get the desired re-

sult.

4.3.1 Cost Model and Optimal Policy

Let

¢, = cost of fixing an error during testing,

c, = cost of fixing an error during operation
(e, > ¢q),

cy = cost of testing per unit time,

t = software life-cycle length, and

T = software release time (same as testing

time).

Since m(t) represents the expected number of errors dur-
ing (0,t), the expected costs of fixing errors during
the testing and the operational phases are clm(T) and
c2[m(t) - m(T)), respectively. Further, the testing

cost during T is c3T.

4-7
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Combining the above costs, the total expected cost
is given by

Cc(T,t) = C(T) = clm(T) + c2[m(t)-m(T)] + ¢,T. (4.5)

3
These costs are also shown in Figure 4.2.
%
Our objective is to find the optimum value T that
minimizes (4.5). Differentiating (4.5) with respect to
T, we get

dCc(T) /4T = clm'(T) - c2m'(T) + c (4.6)

3 -

Equating the right-hand side of (4.6) with zero and not-

ing that A (T) = m'(T), we get

MT) = cy/ (e, = ) . (4.7)
where

A (T) (4.8)

"
[+
o
o

Note that X (T) is a monotonically decreasing function of

T and 2 (0) = ab. 1If ab < cz/(c2 - C {({4.7) has no

l)l
feasible solution and, for T > 0, 4AC(T)/4dT > 0 (see

g ]
R

)
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v
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Cost of
- fixing an error ' |
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' time

«Testing*lv— Operation = —~ BRI
¢, m(T) C, [m(t)- m(T)] ~‘.-;-,~1
+C3T
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Figure 4.3. Hence, for this case, the minimum of C(T)
*
is at T = 0; that is, T = 0.
Now, if ab > c3/(c2 - cl), there exists a unique

feasible solution of (4.7) given by (see Figure 4.3)

ab(c2 - cl)
T0 = (1/b) n|[ e, ] . (4.9)

Since 4dC(T)/dT < 0 for 0 < T < T, and dC(T)/dt > 0 for

0

T > Ty, the minimum of C(T) is at T = T, for T, < T and

at T = t for T0 > t. These can be summarized as follows.

Theorem 4.1. {i) If ab > c3/(c2 - c then there

r

exists a unique feasible solution of (4.7) and the opti-

mum release time is
* .
T = mln{To,t} ,

where T0 is given by {4.9).

*
(ii) If ab < c3/(c2 - Cc then T = 0.

1)

It should be noted that, if the minimur expected

cost exceeds the operational benefit to be “ained, no

testing should be undertaken.

' . N
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To illustrate the above results, consider the data
set mentioned in Section 4.2. Here a = 1348 and b =
0.124. Let cl =1, c, = 5, c3

Then ab = 1348 (0.124) = 167 and

= 100, and t = 100.

c3/(c2 - cl) = 25

Since ab > c3/(c2 - cl), the optimum release time

-3
Il

min{ (1/0.124)2n(167/25), 100}

or

3
It

min{15.3,100} = 15.3

Hence, the optimum solution for this case is to allo-
cate 15.3 weeks for testing and 84.7 weeks for opera-
tion. The cost associated with this policy will be

*
C(T ) = 3687.

*
4.3.2 Sensitivity Analysis of T

Now we investigate the effects of the parameters

a, b, and c, = c.%/(c2 - cl) on the optimum release time.
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First, frcm Theorem 4.1, we note that T* equals 0, t,
or TO‘ Since T* = 0 and T* = t are degenerate cases,
we shall consider only the case when T* = TO.

From (4.9), we see that T0 increases logarithmical-
ly with a and decreases logarithmically with c,. as others
are kept constant. Next, the first and second deriva-
tives of T0 with respect to b indicate that T is a con-
cave function of b with maximum at bo = ecr/a, and the
maximum value of T0 is l/bo.

In practice, for a given software system, the value
of a prior to testing is fixed and one may be interested
in the joint effect of b and c. on To. The value of b
can be affected by an appropriate selectioﬁ of tgsting
strategies and techniques. For the data set discussed
earlier, a = 1348. Fér this case, contours of T0 in
the b--cr plane are shown in Figure 4.4. Also shown is
the optimum value of T corresponding to the above numer-
ical example. This diagram can also be used to deter-
mine the value of b if T0 is fixed due to some 6ther

considerations. Thus, if c, = 25, and T0 = 15, we need

b =0.13. If, however, T0 = 10, b must be 0.265.
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Fig. 4.4 Contours of Tg in the b, c3/(c2 - c]) plane (a = 1348).
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4.4 OPTIMUM RELEASE TIME BASED ON COST CRITERION
(MODEL OF SECTION 3)

4.4.1 Cost Model and Optimal Policy

The cost model for this case is similar to that
given in Equation (4.5) and is (quantities are as de-

fined in Section 4.3.1)

c(T,t) = ClM(T) + c2[M(t) - M(T)]) + c3T (4.10)

where

_1..C
M(x) = a(l - e P¥7y | (4.11)

On differentiating (4.10) with respect to T and equating

the result to zero, we get

AT = MU(T) = 32—, (4.12)
2" %
where
A(T) = ar¥L . e BT (4.13)
a = abc
8 =Db
Yy = ¢

. d
X x

X
R




T ————

To solve (4.12) for T, we consider three cases depend-

ing on the value of y, viz y » 1, y =1, and 0 < y < 1.

Case When v > 1

For this case, the failure distribution has an in-
creasing failure rate followed by a decreasing failure
rate. Then we see from (4.13) that A(T) is a unimodal

function of T with A(0) = A{(~») = 0. Also, its maximum

A{T ) occurs at T_ where
m m

_ (x=1,1/y
= (L= .14
Tm ( BY) (4.14)
and
- y-1, (y-1)/xv
A(Tm) = a(E?E) . (4.15)
€3 €3
If A(T_ ) < and A(T) <« ——=——+ for T » 0, then
m c2 - Cl (c2 - cl) -
it is easy to see that Equation (4.12) has no feasible
solution for T. Therefore, for T > 0, QE%%LEL > 0, and
the minimum of C(T;t) is at T = 0. 1In other words, if
€3 €3 *
A(T_ ) < o and A(T) < o then T = 0. This
m 2~ % 2 1

is shown graphically in Figure 4.5.
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Fig. 4.5. Plots of C(T;t) and A(T) for v > 1 and “(?3—;%) v, 73
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c
= 3 d . = =
1f I\(Tm) = (cz = cl), aT C(T;t) 0 for T Tm’
d
then aT C(T;t) > 0 for 0 < T < Tm and for T > Tm' Then
Equation (4.12) has a unique feasible solution T = Tm.

However, T = Tn is an inflection point of C(T;t) for

this case. Therefore, the minimum of C(T;t) is at T = 0,

*
i.e., T = 0 as seen in Figure 4.6.

c
If, however, A(T_ ) > 3 , there exist two fea-
m Cy, = G

sible solutions T = Tl and T = T2, 0 < T1 < T2 < «, which

are the two positive roots of Equation (4.12). Also,
A(T) <€ —— , 0 <T< T T > T
and

MT) > —=—, T

For this case, Tl and T2 can be obtained by solving

Equation (4.12) numerically. It should also be point-

ed out that QE%%LEL >0 for 0 < T < Ty T > Ty, and
QE%%LEL < 0 for T1 < T < T2. In this case, we consider

the minimum of C(T;t) for the following three cases

(see Figure 4.7).
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Case A. If C(0;t)

C(Tz;t), then the minimum of C(T;t)

is at T = T, for t >~ T, and is at T = t for t < T,.

2 2
Case B. If (0O;t)
is at T =0

Case C. f C(0;t)

A

C(Tz;t), then the minimum of C(T;t)

C(Tz;t), then the minimum of C(T;t)

is at 0 or T, for t > T, and is at T = 0 for t - T,.
Case When v = 1
. -RT
For this case, A(T) = ue where o« = ab and B = b.

Now A(T) is a monotonically decreasing function of T and

c
A(0) = u. If a < ——2——, (4.12) has no feasible solu-
dc(t;t) | 2 1
tion and —_ETL__ > 0 for T > 0. Therefore, the minimum
* .
of C(T;t) is at T = 0, i.e., T = 0. 1If, however,
c
u > E__%_F—' then there exists a unique solution of (4.12)
2 "1
givenr by
_1 iley — )
TO =5 2n{~—T——-} . (4.16)
3
dC(T;t) B dC(T; t)

From the fact that U 0 for 0 < T = T and 37
> 0 for T - Ty the minimum of C(T;t) is at T = T, for

t » T, and at T = t for t < T
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Case When 0 < y < 1

For this case, A(T) is a monotonically decreasing
function of T with A(0) = =« and A(») = 0. Then the unique

positive root of Equation (4.12) is the solution. Fur-

. dC(T;t) dC(T;t)
ther, since a7t < 0 for 0 < T < T3 and —aTr 0
for T > T3, the minimum of C(T;t) is at T = T3 for t < T,

and at T = t for t < T3 as seen in Figure 4.0. We can

summarize the above results in the following theorem.

Theorem 4.2. Suppose that o, B, vy, Cyv c2(> cl), and C,

are all greater than zero. Then the optimum release time
*x

T 1is given by the following expressions for the cases

when vy > 1, y =1, and 0 < y < 1.

Case When vy > 1

. - - *
Case A: If a(l—l)(Y ) /x < ———2———, then T =0
—_— Bye Cy = ¢y
-1, (y=1)/ €3
Case B. If a(l——) Y LN , then there exist two
—_— Rye Cy - g
feasible solutions T = Tl and T = T2 (0 < Tl < T2 < ®)

which are the two positive roots of Equation (4.12) and

the optimum release time is as follows:
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Piots of C(T;t) and A(T) for 0 <y < 1.
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If C(0;t) > C(Tz;t), then T = min{Tz;t} '_!:
* T
If C(0;t) < C(Tz;t), then T =0 .
* S
If C(0;t) = C(Tz;t), then T = 0 and T2, t > T2 oo
X - g
and T = 0 for t < T, ]
- o
t‘ Case When y = 1 . .

C3 * cq
If o < e then T = 0. If a > - then

: €2 1 €2 1 \
L. there exists a unique solution v
} 4
- S
1, efey ey ]
To =3 Sln{—c-3—-——} 1
* . ..
of Equation (4.12) and the optimum release time is T = ' _1

min(TO;t).

@

Case When 0 < y < 1

CN I N IS

For this case, Equation (4.12) has a unique positive

root T3 which is the solution, and the optimum release . ,1
*
time is T = min{T3;t}.
.
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Al. INTRODUCTION

In this section we describe the development of sto-
chastic models for performance and cost cvaluation of
hardware-software systems in the operational phase.

Section A.2 deals with the development of stochastic
models for system performance assessment. The state of
the system is describhed by up or down states of the
hardware and the software system and by the number of
errors in the software system. The hardware-software
system is down if either the hardware or the software
system is down, and up if both are up. The hardware
failure distribution is exponential with failure rate
B. The software failure distribution between occurrences
of software failures is also exponential with a failure
rate i, where i = 0,1,...,N is the number of remaining
errors in the system. The repair rates are exponential
with parameters y and j:, and the probabilities of imper-
fect repair are Py and Pg for the hardware and the soft-

b

ware systems, respectively.

Based on this model, expressions for various
stochastic performance measires are also developed in
Section A2. Thesn are distribution of time to a speci-

fied number of remaining softwarc errors; state

L ep——r—w
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occupancy probabilities; expected number of hardware,
software, and hardware-software failures detected by
time t; system reliability, availability and average

availability.

In some cases, an improvement in one performance
measure causes a worsening of another. For example, an
improved system availability causes an increase in the
expected number of failures. In order to evaluate the
effect of these conflicting measures on system per-
formance, cost models are developed in Section A3 for the
hardware, software, and hardware-software systems. Each
model gives expected total cost by time t and consists
of three cost elements; the cost of failures, the cost
of repairs, and the cost due to system unavailability.
The results of a numerical study to investigate the
effects of cost factors, failure rates, and repair rates
on the expected number of failures, average availability

and expected total cost/unit time are also discussed.
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A2.‘A MARKOV MODEL FOR HARDWARE-SOFTWARE
SYSTEM AND PERFORMANCE MEASURES

In this section we develop a stochastic model and
expressions for the performance measures of a hardware-
software system. The basic model is developed in Section
A2.land assumes the system behavior to be Markovian.

In order to use this model to evaluate and predict
the system performance, we generally need expressions for
the appropriate gquantitative measures. Such expressions
for the following measures are derived in Sections A2.2
to A2.5.

(i) Distribution of time to a specified number of

remaining errors in the software system.

(ii) State occupancy probabilities.

(iii) System reliability and availability.

(iv) Expected number of software, hardware, and

o«

.

4 total failures by time t.

b

-

f

E A2.1. System Description and Model Development

R

» Consider a system consisting of hardware and software
components, all of which are subject to random failures. The

: hardware comnonents €ail due to either defects or wear-out.

!
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A software component is said to fail when a fault, a
specific manifestation of an error in the program, is
evoked by some input data resulting in the program not
correctly computing the required function. Whenever
any of these failures occurs, the system goes out of
operation. A repair activity is then undertaken to re-
move the cause of the failure and bring the system back
to an operational state.

In the present study, we assume that the hardware
and software components can be viewed as a single system
each. In other words, the hardware-software system will
be treated as 2-unit {(or 2-system) systems, one repre-
senting the hardware components and the other the soft-
ware components. The up and down states of such a system
are shown in Figure A2.1.

We develop a model for the stochastic behavior of the

system under the following assumptions:

(i) The errors in the software system are independent

of each other and each has an error occurrence
rate i.

(ii) The failures of the hardware system are indepen-
dent of each other and have a constant occurrence
rate f. Only those failures which cause the
system to go down are considered.

(iii) The probability of two or more software or

hardware failures occurring simuitan2ously

A-4
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is negligible.
;‘ {iv) The time to remove a software error, when

there are i errors in the system, follows an

Lo Jaul anh at

exponential distribution with parameter My .

F! (v) The time to remove the cause of a hardware

. failure follows an exponential distribution
with parameter «.

F‘ (vi) Failures and repairs of the hardware system are
independent of both the failures and repairs of
the software system.

] (vii) At most one software error is removed at correc-
g tion time and no new software errors are intro-
duced during the error removal (correction)
phase.

(viii) When the system is inoperative due to the occur-

rence of a software failure, the error causing
the failure, when detected, is corrected with

probability P (0 < Pq < 1), while with proba-

bility qs(pS + g 1) the error is not removed.

Thus, dq is the probability of imperfect main-
tenance of software.

(ix) After the occurrence of a hardware failure, the
cause of the failure is removed with probability

ph(O g = < 1) while with nrobability :h(ph + qh=l,,

the cause is nct renoved. Thus, o is




the probability of imperfect maintenance of
hardware.

(x) The system is considered to be inoperative
whenever it is under maintenance following a
hardware or a software failure.

Mow, we examine the failure and repair times of the
software and hardware systems independently, based upon
the above assumptions.

Software failures, from assumptions (i) and (iii),
follow an exponential distribution. Let i be the number
of errors in the software system. Then the probability
density function (pdf) of the time to next software
failure, Ti' is given by the distribution of the first
order statistic of i exponential distributions each with

parameter ), i.e.

i-1

i -2t =)t
£, (t) (1) (e "7y (e ™)

or
£.(t) = ir-e 1Mt (A2.1)

Letting ki = i), the pdf and the cumulative distribution

function (cdf) of Ti can be written as

fi(t)

. e (A2.2)

and

i
b
I
0]

(A2.3)

From assumption (iv), the cdf of the software maintenance

, .. . . ‘. .':‘~
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time when there are i errors in the system, wi, is

P}
-

-ugt
P(W, <t) =1-e (A2.8)

.‘ r,_‘:_ -
1 v
' The cdf's of the hardware time to failure, U, and main- :

. tenance time, V, from assumptions (ii) and (v), respec-
P tively, are: e

P(U < t)

]
—
|
1Y

(A2.5)

and

P(V < t) l -e . (A2.6) ’ .J

To summarize, hardware failures and repairs occur

according to exponential distributions with parameters B8

and y, respectively. These parameters are considered to LR )
remain constant. The distribution of the times between
software failures also follows an exponential distribution, {L '?j
L but its parameter,Ai also varies with the number of errors iﬁ":i]
q remaining in the software system, i. The distribution 'ﬂ{;?

8 of the maintenance time for software is again exponential

ith i ] i ’ e
F wi a parameter H; which changes with i. - .

Now, we consider the failure phenomenon in the total

. A A

- hardware-software system. Suppose there are i errors in
& the software and the total system is operational. Let ® _ ‘.‘
E_ Yi = mln(Ti,U) (A2.7)

It can be easily shown that Yi has an exponential distri-

before a hardware failure is

L bution with parameter (B+ki) and ? :—_
' - (+A,)y '
3 FY (y) =1 - e (A2.8)

f i

.

L; The probability that a software failure will occur v L 2
s

} A-8
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E. P(T <U) = J P(U>T, |T;=t) -dF, (t)

[+ -]

-).t
=JP(U>t)->\ie 1 .4t
0

* -(B+A,)t
=I Aie dt
0

or Ai
P(Ti<U) pl = -B_—'*')\—l ‘ i=20,1, ...,N (A2.9)

Similarly, the probability that a hardware failure occurs

before a software failure is

: _ B . G
P(U<Ti) 2q; =gy i= 0,1, ...,N (A2.10) -

[n other words, when the hardware-software system is
operational with i software errors, the time to next failure L
is given by Yi' The probability of the next failure being *fT‘éi
a software failure is P; and being a hardware failure is qa; -

Let X(t) denote the state of the system at time t; SA fﬁf

where SR 3
B x
(i, the system is operational while there -
are i errors remaining in the software
. o
system, i = 0, 1, 2,...,XN. L4
R
X(t) = < i , the system is down for maintenance of .
S . R
(a2.11) )]
software with i software errors, .o 5
N b
. < v
ig 15'25""’Ns . )
\ ih’ the system is down for maintenance c:Z
hardware with i software exrrors,
.
= N SRR
i, Oh’lh""’ h ‘
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The transitions between the states of the system, i.e.,
in X(t), are governed by assumptions (i) through (x) and
Equations (A2.9) and (A2.10). The transition probability
matrix for the X(t) process is given in Equation (A2.12) ang
a diagrammatic representation of such transitions is given

in Figure A2.2.

N Ny NoN-1N-lp N-loN-2 ... 1 1} 1 0 O
N O @y Py © 0 0 0 ... 0 0 0 0 0 |
¥, P, g 00 0 0 ©0 ... 00 0 0 O
¥ Jag © O p 0 0 0 ... 00 0 0 O
N-1 | 0 0 0 0 gyyPy3 0 ... 0 0 0 0 O
N~} 0 0 0 p, q O ©0 ... 00 O 0 0
-l 0 © 0 g 0 0 p ... 00 0 O O
N-2 1O 0 00 0 ©0 O0 ... 00 O O O

e A [feR )
1 © o 00 0 0 0 ... 0 q p 0O
1, © 06 00 0 0 0 ...p, g O 0 O
1, © 0 00 0 0 0 ...q 0 0 p O
0 6 0o 00 0 0 ©0 ... GO0 0 0 1
% L °© 0 00 0o 0o 0 ... 00 0 p gq
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To summarize the system behavior, consider once again

the above situation, i.e., the total system is operational
with i software errors. The time to a failure is governed
by Yi. If a software failure occurs, and the probability of

this occurring is P the system goes into a down state is.

The system undergoes software maintenance and, after a random

time governed by Equation (A2.4), goes to state i with proba-
bility de and to state (i-1) with probability Pg-

If the failure is a hardware failure, and the proba-
bility of this happening is ay the system goes into a down
state, ih. Following a repair for the failure according to
Equation (A2.%), the system goes back to state i with proba-

bility P or stays in state ih with probability dy, -

The above system behavior is valid only until the soft-
ware is error-free. After the software is error-free, the
total system reduces to a hardware system only.

Thus, we see that the stochastic process X(t) forms a
semi-Markov process. It makes transitions as described
above and the times spent in various states are random,
given by Yi’ Wi, or V, depending on the state. A typical
realization of the X(t) process corresponding to Fiqgure

A2.2 is shown in Figure A2.3.

Let Qk,j(t)' k,j = i,is,i be the one step transi-

hl
tion probability that after making a transition into state X,

the process ¥(t) next makes a transition intoc state j in

an amount of time less than or equal to t. Then, Q {£)

kK,3

>
I
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is given by the product of P and the cdf upto t of the

k,3

time corresponding to state k. Thus, for k = i, and j=1i

sl
we have
Qi,i (t) = Pi’i Py (t) (A2.13)
s s i
The expressions for various Qk j's are as follows:
’
)\i —(B+)\i)t ~
Q. . (t) = 57—/ (1 - e )
1,1S £+ Ai
-(B+2.)t
8 i
Q. (t) = 4747/ (1 - e )
l’lh B + Xi
‘Uit
Qis,l(t) =qs(1—e ),
e (A2.14)
- _ i
i ,i—l(t) =Pl ® )
- _ oYt
h
and
-yt
Q. . (t) =g (1 -e ",
lyrly h _J

The expressions for Qk

constitute the basic equations that describe the stochas-

j(t)'s given by Equation (A2.14)
’

tic behavior of the X(t) process. These equations will
be used in the subsequent sections to derive the system
performance measures. We will need the Laplace-Stieltjes
transforms of the Qk,j(t)'s and some related results.

These are given below.

.-
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Let £ and £S denote the Laplace and Laplace Stieltjes trans-

form, respectively; and for any function g and G, let

g*(s) = £(g(t)), and G(s) =.£S(G(t)).

The Laplace-Stieltjes transform of the above Qi j(t)'s
14
are
_ :“i
L8y ) =gy (A2.16)
s i
B
’cs(Qi,i I T o e (A2.17)
h i
aMy
XS(Ql , ) = m, (A2.18)
s i
Pglyi
XS (Q; ;) sy (A2.19)
PLY
XS (Q ) In (A2.21)
lh,lh s + vy

The following Lemmas from the basic Laplace,
Laplace-Stieltjes transforms and their inverses will be
useful for our analysis (see Abramowitz et al., 1965,

and Muth, 1977).

Lemma A2.1. (Linearity property). If
h(t) = Af(t) + Bg(t)
then
h'(s) = £ (h(t)) = af(e) + Ba'(s).
A-15
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Lemma A2.2. The Laplace transform of pdf f(t) is equivalent

tc the Laplace-Stieltjes transforr of its cdf F(t).

£(s) =L £ (t)) e Sts (t)at

e-StdF(t)

1)
O-—=3 O“——— R

LS{F (t)}.

i

Lemma A2.3. (Heaviside Expansion Theorem). If

(i) g(s) = (s-al)(s-az) .o (s-am),

where ay # a # ee. # a

(ii) p(s) is a polynomial of degree m, and

(1ii) fte) = BIS),
then
r play) apt
f(t) = L ﬁ—(——e ’
n=1 ¢ an)
m
where a'(a,) = T (a, -~a.)
. . 1 4
i,q=1
i#3
arc
r. p(a_) 1 at
F(8) = | zrT "5 (€™ - 1.
n=1 ¢ %n ®n
Ifcne cf the a_s i.e. a, =0, 1 -1 < m, then
. r t
F(t) = ?Ea)tw* ; i(a(—”)— Loen oy,
© ai) n=1 a an) an
n¥.
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A2.2 Distribution of Time to a Specified Number of

Remaining Errors in a Software System

The errors remaining in the software system are
sources of failures and we would like to remove them
as soon as possible. However, it is not always feasible
and/or practical to remove all of them in a reasonable
time. In that case, we would like to know the distri-
bution of time to n (0 < n < N) remaining errors.

Let Ti be the first passage time for operational

’

state i to operational state n and let G; be its cdf.

Now we derive the equations for IN n(t) and Gy n(t), the
’ ’

pdf and cdf, respectively,of T

i,n

A2.2.1 Distributionvof T“

,n
Consider a time interval (r,r+dr). For any i, the
probability of going from i to is in this interval 1is

in i (r) and the probability of going from i to ih is
14
s

ao (r). oOnce the X(t) process reaches either is or i

i,ih h’

further transitions in it will be governed by cdf's, G,
14

s
and Gi n' respectively. Thus, the renewal equation for
hl

Gi n’ i = n+l, ...,N can be written as
’

P
i
r-
r
y
' L B
B
;
) @
‘1
:
) o
=Y
3
1
1
v )
1
i
i
’ o
1
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G; L(t) = kgE J Gy n(t - x)d0; (%)
0
=95,1 %% a8 Q6 n ()
= Qs "%ty 10 a0 ¥ %,1 %% _,i"6,n ()
Y 04,5 "0 ,5-1"C-1,n (B (a2.22)

: - - 3
w?ere E is the state space, Gn,n =1, QH = ?Qih'ih' and
Qq . 1s the j-fold convolution of Q. ., with itself.
*h'th *h'th

Taking the Laplace-Stieltjes (L-S) transform of Equa-

tion (A2.22) we get
Gi,n(s) = Qi,l (S)QH(S)Qi ,i(s)Gi,n(s)
h h
+ 0. . o. . .
Ql,ls(S)'ls.l(s)Gl,n(s)
+ Qi,i (s)Qi ,i-l(S)Gi-l,n(s)' (A2.23)
s s
where
-~ o ~- +Y
Qy(s) = z Q? . (s) = Sty
§ j=0 *h''n S + pY
and, from Equations (r2.16) to (A2.21),
0 R
Q. . (s) = >
l,lh s + B + Ai
~ q9,.Y
Qi i (s) = g_—?——? ’
h’ h
~ PhY
th,l(b) = m '
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On substituting the expressions for the various L-S trans-

forms in Equation (A2.23) and simplifying, we get

- Gi,n(s) = aiGi,n(s) + biGi-l.n(s)' (A2.24)
i where
a. = p?Yf(s+;%;+;+?s:%:i(s;ph7) , (A2.25)
i STPhY i My
P,
b, = s 11 . (A2.26)
(S+ui)(S+B+Ai)
For i = n+l, Gi-l,n(s) = Gn,n(s) = 1, and
- - b.
= A2.27
Gi,n(s) Gn+l,n(s) 1= 3, ( )
P A;u; (s+p, Y)
(s+xs l)ts+x 8 ) (s+x )y ! (A2.28)
1,i 2,i 3,1
where -x. ., -X and -x_, . are the roots of the polynomial

1,1 2,i’ 3,1

3 2 .
. + .U
s” + s (Ai+ui+8+phv) + s(psxiui+8ui+kith+ulphv) psphvklul

. N p.r.u; {(s+p, v)}
Gy (s) = I si1 h (A2.29)
N,n i=n+1 (S+xl'i)(s+x2'i)(s+x3’i)

Further, let

A-19
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X ne2 = %y (A2.30)
X2,n+2 = X5
%3,n+2 = %6
1,8 T *1(N-n)
X2,8 = X2(N-n)
%3, T *3(N-~n)
and
K = 3(N-n)
N
) {pg(s+p,v) "0 1 Au; )
G (s) = i=n+l1
N'n K hd (A2.31)
T (s+x.)
j=1

By using the results from Lemma A2.3, the

pdf and the cdf of Ty n are obtained from Equation (A2.31)

as
N N-n
K U (-x.+p,Y) -x.t
gy o) = ] B h e (32.32)
,n 2, T K
i=1
i#]
and
K U§+l( X. + th)N-n 1 -x.t
G, (t) = [ = (e J -1) (A2.33)
N,n =] K -X .
J T (-X. + x.) J
i=1 1
1#7
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where
N
N
U = I (p_r.u.).
n+l j=n+1 S 11

The distribution function of the first passage
time to enter a state corresponding to a specified number
of remaining software errors will be useful in the study

and analysis of the other performance measures.

A2.2.2 Mean and Variance of TN n
[

Now,

0

Substituting for gN,n(t) from Equation (A2.32), we get

N N-n oo
K U (=x. + p,.v) -x.t
E[T, 1= J -B¥ 73 'h -J te J at
N,n =1 K
] T (-x. + x.) 0
i=1 ) 5
i#3
or
N N-n
K U (=x; + p_vY)
ElTy 1= ] 23 'h e S (A2.35)
=1 I (-x, + x,) ( xj)
i=l J 1 \
i#j
A-21
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Similarly, to get the variance of TN n ve have
’
N N-n
K U (-x. + p,Y)
2 +
Elty 0= §} 2 "3k e (A2.36)
! j=1 ( x.)
) n (-x. + x.) j
X . J 1
i=1
i#3
and
var(T, .1 = E[T?2 ] - E2[T. _] (A2.37)
N,n N,n N,n"°* :
A2.2.2 TIllustrative Example
Consider a system with N = 10 errors, P = 0.9, and
Py, = 0.9. Assume that Ai = i), My = iy, and the parametric

values are X = .02, u = .05, B = .01, and vy = .025. We

are interested in the distribution of T , n=260,1,2,...,8,9.

N,n

The pdf's and cdf's of TN n

for various values of n and for

t from 0 to 500 units are computed from Equation (A2.32) and

(A2.33), respectively, and are shown in Figures A2.4 and A2.

respectively. Also, the means and variances of these dis-
tributions are obtained from Equations (A2.35) and (A2.37)
respectively, and are summarized in Table A2.1l. From
Figures (A2.4) and (A2.5),we notice that the distributions
are highly dependent on n. Also, as expected, the distri-
bution of the time to an error-free software system has

a large mean and a large variance (see Table A2.1). The
mean and variance of TlO,n for P = 1.0 are also given in

Table A2.1. We note that both of these values are smaller

A-22
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than those for P, = 0.9 because of an improvement in the

hardware system maintenance activity.

A2.3 State Occupancy Probabilities

In this Section we are interested in deriving expres-
sions for the probability that the system is operational
at time t with a specified number of remaining software

errors. Let P n(t) be the probability taat the system

N, S 2
i is operational at time t with n remaining software errors, :
g given that it was in operation at time t = 0 with N soft- S
L‘ ware errors, i.e. 1
N
Py,n(t) = P{X(t)=n|X(0)=N}, n=20,1,...,N (A2.38)

- We call Py n(t) the (operational) state occupancy f

X ’ .
t‘! probability. By conditioning on the first up-down cycle -
f5 of the process and using an approach similar to that of Rt

o Section A2.2 we get the following renewal equation for
b! Pn,n(t) L)
[ _(An+8)t 2.39) ﬁ
= = * A2, .4
5 Pn,n(t) e + Qn,n Pn,n(t) ( e
* 3
: By conditioning on the first passage time, we get - ]
'@ L
f = * A2.40 T
o PN,n(t) Pn,n GN,n(t)' ( ) .ﬁ
1 To obtain the L-S transform of PN n(t), we take the rﬁj
. ’ T
}' L-S transforms of Equations (A2.39) and (A2.40) and solve ' KA
;: the resulting equations. Let ai's, bi's, and X, j's be as '
’

: given in Equations (A2.25), (A2.26), and (A2.30), respectively. i
i. ' P
4 - -
P‘ - B
{ A-26 .
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Then, by having §N N(s) = 1, and letting
’

A(s)

sB(s+un) + An(s+psun)(s+th). and
)

B(s8) (s-—xl n)(s—x )(s-x

the L-S transforms of Py (t) and PN 0(t), respectively, are

Py pls) = (- 5—%—53)6 (s) (A2.41)

and -
-~ - - B -~
Py,of8) = 1 - g5 g Ty %n,0(8)

The expressions for PN,O(t) and Py (t), n=1,...,N
[ 4

are obtained from the results of Lemma A2.1 to A2.3 as

N N-n -x.t
K U (-x. +P.Y) A(-x.) j
_ _ ntl® 73  “h 37, (L-e )
n(t) =Gy ,(t) _21 % -
1= T (~x. + %) J
i=1 ] * '
i#3 i
and
K -X.t
p (t) —e 5‘1 BUl ( X +th) . (l_e J )
N,0 N,O - Kl X.
no (=x.+x;) ]
i=1 3t
i#j

where K = 3(N-n+l) and K1 = 3N+1 are the number of roots
in the denominator.

A2.4 System Reliability and Availability

A2.4.1 system Reliability

The reliability of a system at time x is given by
F(x) =1 - F(x)
where F is the 1life distribution of the system. The corre-

sponding conditional reliability of a unit of age t is

A-27
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- F(t + x)
F(t)

Consider our hardware-software system. At t=0, the

g F(x|t) , if F(t) > 0

initial number of software errors in the system is equal to

N. The reliability of the system at this stage is

b P {up time > x}

*‘ Next, consider some time t > 0 when the system has just been
4

P {min(U,TN) > x}
P {U>X)0P {T>X}

-(B+X ) x

repaired and there are i remaining errors. The reliability of

the system is

‘(B"‘Ai)x
P {up time>x|X(t) =i}= P {min(U,Ti) >x} =e (A2.42)

A2.4.2 System Availability

Another useful measure of system performance is its

availability,which is defined as the probability that it is
operational at some given time t. In our case, the system will B “fw
be operational if the hardware system is in an up state and the ' ..3
software system iz in an up state with n remaining errors,

n=0,1,...,N. In Section A2.3,we derive the expressions for
PN,n(t)’ the probability that the system is operational at ) .
time t with n errors in the software system, given that it

was operational at t =0 with N software errors. Thus, the

system availability can be defined as . ]

’ 4
N - <
A(t) = Z Py, n (t) (A2.43)
n=0
To see the behavior of A(t) we consider an example
’ o

with N = 10, p, = 0.9, py = 0.9, A= ,02,u=.05, B=.01 and

=

Y
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Figure A2.6. State Occupancy Probabilities
and System Availability.
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Table AZ2.2
Selected Values of P (t) and A(t)

e uten o

N'n
N = 10
Time
n 50 100 200 300 400 500
10 .003 .001 .000 .000 .000 .000
9 .009 .003 .000 .000 .000 .000
8 .030 .006 .001 .000 .000 .000
7 .081 .012 .002 .000 .000 .000
6 .149 .024 .004 .001 .000 .000
5 .166 .052 .008 .001 .000 .000
4 .106 .106 .018 .004 .001 .000
3 .036 .159 .N4a2 .011 .003 .001
2 .006 .139 .105 .037 .011 .003
1 .000 .054 .215 .146 .074 .033
0 .000 .005 .191 .437 .578 .645
A(t) .586 .561 .586 .637 .667 .682
aA-30
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Yy =.025. For these values, distributions pN,n(t)' n=0,1,...,10,

t from 0 to 500 are obtained as described in Section a2.3. Se-
lected values of PN,n(t) are given in Table A2.2 and the proba-
bility distributions are plotted in Figure aA2.6 for n=0,1,...,10.
The availability, as given by Equation (A2.43) is obtained as the

sum of probabilities. Thus, for t = 100, we have

10
A(100) = ] P, (100) = 0.5612
. . n=0 !
Similarly 10
A(500) = § Pyo,n(500) = 0.6819
n=0

Values of A(t) for various t are also plotted in Figure A2.6

A2.4.3 Average Availability

A sampling measure for the availability of an operational
system is the ratio of total up time to total time elapsed.
From 4 practical point of view, it is an important measurable
sampling characteristic.

From the definition of availability, we find that the

expected value of total up-time by time t ca. be expressed as
t

u(t) = l A(x)dx.

The ratio of this value to the total time elapsed, t, will

give us an average availability up to time t, A (t), i.e.

t
J A(x)dx
= U(t) _ 0
Aav(t) 3 - t

Similarly, the average unavaillability can be ex: re¢s«.
t t

as J A(x)Ex [ {1 ~A({x) >
0 0

1-n () =1o—a = —
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A2.5 Expected Number of Software, Hardware
and Total Failures by Time t

A2.5.1 Expected Number of Software Failures

Let M_(t) be the expected number of software failures

detected by time t. In order to find the expression for
M (t), we consider a counting process {N_.(t),t > 0},
where N_. (t) is the number of software failures detected
during the time interval (0,t], when the initial number of
errors in the software system is i. Let

Mg (8) = EIN_, (B) [X(0) = i] .
Then, by conditioning on the first péssage time going
from state N to i,

Ms(t) = igoMsi*G
where Msi(t) can be obtained by conditioning on the first

N,i(t) (A2.45)

down cycle of the process

M .(t) =Q. . (t) + Q. . *
si i,ig i,ig

Qigi*Msi(t)

* *
+ Qi,ih Q4 Qih,i*Msi(t)

The Laplace Stieltjes transform of Msi(t) is L
PRI - "-‘
X, ) o

-~ _ i ~ Lronammads mammn
MsilS) T s et iMsi (S L

where ai is defined in Equation (2.25). Now,

~ o L

or - Ai(s+ui)(s+phy) ;ijfe
M ;(s) = IR

si (s+xl’i7(s+x2’i)(s+x3'i) o e

—
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where X),i’ xz’i, x3'i are given in Equation (2.28).
In a simpiified form,

= 1 ' (A2.46)

From (A2.45) and (A2.46) the L.-S transform for Ms(t) is

-~ ~

1 MsiGN,i(s)

o~2Z

MS(S)

i

(s + LFR IS
G

- i£1 pu;  on,i-1'%)

(A2.47)

Finally, using Lemmas A2.1 to A2.3, we obtain the expression

for Ms(t) as

N-i+l -x.t
(-xj+ui) . (l_e h) )
K X,

ni (=x; + x,) j

L=1 J

2#1

K N, .
N i U, (-x,+p,.Y)
M_(t) = ) 1" ") "h_
i=1l j=1

PgHji
where Ki = 3(N-i+l).

A2.5.2 Expected Number of Hardware Failures

Let Mh(t) be the expected number of hardware failures
detected by time t. Consider a counting process, {Nhi(t)’

t > 0}, where N, .(t) is the number of hardware failures

detected during the time interval (0,t], when the initial
number of errors in the software system is i. Let

M, (£) = EIN, () [X(0) = i]
Then, by conditioning on the first passage time going
from state N to i,

N
Mh(t) = I M '*GN,i(t)

i=o M
where Mhi(t) can be obtained by conditioning on the first
down cycle of the process
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LSt Han st e, gt

Mhi(t) = Qi'i (t) + Qi,i *QH*Qi 'i*Mhi(t)
h h h
* 05,1 "%, 1 M (O
Now, the L-S transform of M ;(t) for i =1,2,...,N is

. ; .
My (S) sverr; ¢ 33t (®)

or

~ B(S+ui) ~ A2.50
Mhif®) = g3 Si,i-108)- (a2.50)

S 11

For i = 0, this L-S transform becomes

B 1
Mho(s) " s+ BYI-a

0

or
(s+p,Y)

st+8+phys *

Mho(s)

From (A2.49)the L-S transform for Mh(t) is

. N -
M, (s) = izo My; (8)Gy 4 (8) (A2.51)

The inverse L-S transform of ﬂhi(s)éN i(s) is
[ 4

N N-i+1l -x.t
i B34 (OXy4PpY) (x*uy) | a-e 3
K. X.
L=1 J
%3

nhe~R

Gy (8) =
j

where Ki = 3(N-i+l), and the inverse L-S transform of

ﬁho‘S)éN,o‘s’ is
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N N+1 K~1 N N+1 -x.t
G (t) = BU, (PpY) " 7t . 3 B_Ul(xj+PhY) L (1-e 3

j=1 e LI T (g * %)

xjfo L¥5

where K = 3N + 2,

Finally, the expression for Mh(t) is

N
M (t) = Gy(t) + izlc;i(t:).

A2.5.3 Expected Number of Total Failures

Let M(t) be the expected number of total failures
detected by time t.

Consider Mi(t) to be the expected number of total failures
when there are i software errors in the system. For any

i= 0,1,2,..-,N.

Mi(t) = Msi(t) + Mhi(t) (A2.52)
where Mso(t) = 0,
and ﬁi(s) =M (s) + ﬁhi(s)
Then N

M(t) = iio Mi*GN'i(t), (A2.53)

M(s)

N
iioﬂi(s)au.i(s)
or

N
M(s) = i£0<ﬁsi(s) + M, (88 (s)
and '

M(t)

Ms(t) + Mh(t) (A2.54)
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TABLE A2.3

T LT T LY T T L S W W T VWYY s T v

EXPECTED MNUMEER OF FARILURES DETECTED FEFR TYIME

TIME SOF TWARE HARDWARE TOTAL
FAILURES FAILUFRES FAILURES

0.00 0.00 0.00 0.00
20.00 2.48 0.14 2,62
40.00 4.19 0.26 4.45
60.00 S5.47 0.38 5.85
80.00 6.47 0.49 6.96
100.00 7.27 0.61 7.87
120.00 7.92 0.72 8.64
160.00 8.91 0.%94 ?.85
200.00 ?.59 1.17 10.77
240.00 10.06 1.41 11.48
280.00 10.39 1.66 12.05
320.00 10.62 1.92 12.53
360.00 10.77 2.18 12.95
400.00 10.88 2.44 13.32
440.00 10.95 2,71 13.66
480.00 11.00 2.98 13.99
520.00 11.04 3.25 14.29
560.00 11.06 3.53 14,59
600,00 11.08 3.80 14,88
640.00 11.09 4.08 15.17
680,00 11.10 4.35 15.45
720.00 11.10 4,63 15.73
760.00 11.10 4,91 16.01
800.00 11.11 5.18 16.29
840.00 11.11 5.46 16.57
880.00 11.11% D74 16.85
920.00 11.11 6.01 17.12
260.00 11.11 6.29 17.40
1000.00 i1.11 6.57 17.68

——— e

s

el




i.e. the expected number of total failures detected by
time t is equal to the sum of the expected number of soft-

ware and hardware failures.

A2.5.4 Illustrative Example

Consider a system with an initial number of software
errors, N = 10; probabilities of perfect software and hard-
ware maintenance Pg=.9 and P, = .9, respectively; software
failure rate Ay = iA, and X = ,02; software repair rate
y; = iy, and ¢ = .05; and hardware failure and repair
rates B = .01 and vy = .025, respectively.

For this system, the expected number of software,
hardware, and total system failures are computed from
Equations (A2.45), (A2.49), and (A2.54), respectively.
Selected values of these quantities are given in Table A2.3
and plotted in Figure A2.7. The information in Table A2.3
shows us that the number of software failures detected is
increasing rapidly at the early times and then slows down
as the number of remaining software errors and software
failure rate decrease.

On the other hand, the number of hardware failures
detected is increasing with the slow-down of the number

of software failures detected.
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A3. OPERATIONAL COST MODELS

In Section 2 we proposed a model for the operational
phase of the hardware-software system and developed ex-
pressions for several performance measures. In many appli-
cations, these individual measures are of less interest
than an overall measure, such as the expected total cost.
With this objective, in this section we develop cost
models for the hardware, software, and hardware-software
systems. The principal cost components considered are
the cost of a failure, the cost of the maintenance activity
performed to bring the system back to an operational state,
and the cost of system downtime. The primary measures
that affect the total cost are the number of failures and
the system availability.

The relative importance of these measures in a given
situation can be expressed via the numerical values for
the cost factors.

Models for hardware and software systems are developed
in Sections A3.1 and A3.2, respectively. The total hardware-
software system is discussed in Section A3.3. Several

numerical examples are used to illustrate the results.
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A3.1 Operational Cost Model: Hardware System

In this Sectioh wé;deQelsp'a cost model for the hard-
ware systém. The system is in an up state at time t = 0.
After a random time U, whose distribution is gxponential
with parameter B (see Equation A2.5) a failure occurs and
the system goes into a down state. A repair or mainten-
ance activity is undertaken and after a random time V,
whose distribntion is exponential with parameter y (see
Equation A2.6), the system is brought back into an up state.
The céuse of the failure would have been removed with
probability Pp (0 < P, < 1l). Thg sequence of up and down
states forms a renewal process. For purposes of this
Section, it is assumed that the software system has no
effect on the operation of the hardware system.

The following costs are incurred due to the failure
and maintenance activities:

(i) A fixed cost chl per failure

(ii) A variable cost ch2 per repair per unit time

(iii) A variable cost due to the unavailability of
the system, ch3 per unit time.

Consider the time interval (0,t).

Let

Ch(t) = expected total cost incurred by t,

M, (t) = expected number of.hardware failures by t,

A-40
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B

A, (t) = system availability at t. R

Then, the expected total cost by time t is given by

t
= | -A A3.1 :
Cpl®) = M (&) + oy yE + o [(1-A (x))ax (B3.D)
1 2 3]
where ?11'
f o
I{l-Ah(x)}dx is the expected total down time during R
0 .

(0,t). Now we develop expressions for M, (t) and A, (t) %;5&;
and obtain a closed form equation for Ch(t). Consider R
one up and down cycle, i.e., one renewal. If the main-
tenance activity is perfect, the length of this cycle
will be U + V. If, however, the maintenance activity is
imperfect, the repair will go another V units of time
so that the length of the cycle will be U + V + V. If
the maintenance is imperfect for the second time, the
length of the cycle will be U + V + V + V, and so on.
Therefore, the probability density function, g, of the
renewal time is given by

9 = ppfy*fy * Py iyt ey

2
+ ppapfy*EyEytiy * oo (aA3.2)

where * stands for convolution,

fU is the pdf of U,
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and - fv is the pdf of V.

The Laplace transform of g, g* is

g*(s) = py IJ(S)f (s) [1 + q fy(s) + (thV(S)) + ...
1
or g*(s) = p, f(s)£X(s) (
h'U \ 1 - g fi(s)
_ B Y s +
or g*(s) =P, gFrEs+y 5F plv
. BP, Y
or g*(s) = = E (s 5y (A3.3)

Now, the renewal equations for the expected number of hard-

ware failures can be written as
t
Mh(t) = FU(t) + f Mh(t - x)g(x)dx (a3.4)
0
where FU(t) is the cdf of U.

The Laplace transform of Mh(t) is

* f;(S) * %*
Mh(S) =—" M (s)g (s)
_ B . * B th
“sis+s$ +Mh(s) s+BS+phy
or
B(s + p,Y)
* h RS
Mh(s) = — FRA
(s + B + p.Y) e
Py _ﬁ_*ﬁj
By taking the inverse Laplace transform we get ~if'
o
”ffffj
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- e-(B+phy)t
Mh(t) = B[ B+ Py ] +

e -1 + (B+th)t
Bth[- ]

(B + phv)2

or
(B+PyY)

The renewal equation for Ah(t) can be written as
t
AL (t) = 1 - F(t) + [ A (t - x)g(x)dx,
0

and its Laplace transform as

*
1l - £ (s) s + p.Y
A*(S) = u* = h
h s[l - g*(s)] = s(s + B + p,Y)
Therefore, the availability of the system at time t
a () =& ~1 a¥(s)
( 1 -(B+PhY)t
= o~ (B¥Y)L - e
e + th[ B + PRY ]
or - (B+p,Y) t
Py Y + BRe
Ah(t) =
B + PhY

Now, the expected total down time during (0,t) is

)
1
A-43
o
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(A3.5)

(A3.6)
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t
J{l-Ah(x)}dx which, on substituting for Ah(x) from

0
Equation (A3.6), gives -
-(B+p, V) t
t (B+phy)t -1+ e h
J(l - Ah(x))dx = B[ > ] (A3.7)
0 (B + th)

On substituting the expressions for M, (t) and {1-a, (x) }ax

O Sy

from Equations (A3.5) and (A3.7), respectively, in Equation

(3.1), we get, after some simplification,
Ch .

18 -(B+th)t
Ch(t) = ——— [p,v(B+py)t + B(l-e )] + ¢, vt
(B+th) 2

°h33 - (B+p, V)t
+ ——— [(B+pY)t - 1 + e ] (A3.8)
(B+phy)

The above equation gives the expected cost incurred by

time t in terms of the hardware system parameters B, y, and

Py’ and the cost factors Ch.t Sp_v and c

1 By hy”

3
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Illustrative Examples

We numerically study the behavior of Mh(t), Ahav(t)

and Ch(t)/t as a function of the cost factors chl, chz,
ch3 and of the failure and repair rates B and y, respec-
tively.

Consider a system with 8 = .01, P = 0.9, and vy = .01,

.02, .05, .10, .20, .30, .50, .75, 1.0, 2.0, 3.0, and 4.0.
The average availability (A, ,.(t)) and the expected number
of failures by time t are shown in Table A3.l1 for t = 100,
250, 500, 1000, and 2000. We notice that for a fixed
repair rate the average availability decreases with time,
the rate of decrease being higher for low values of Y.
The expected number of failures in a given time interval
increases with y. This is so because at low values of v,
the system is down for longer periods of time, causing a
reduction in the up time of the system.

The expected total cost per unit time (Ch(t)/t) is
now calculated from Equation (A3.8) for given cost factors.
Such values for four sets of cost factors are given in
Table A3.2. For a given t, the cost first decreases and

then increases as a function of y. In other words,

Ch(t)/t seems to be a convex function with respect to Y.
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TarLe A3.1
AVEFRAGE AVAILAERILITY AHD EXFECTED HUMEEFR OF FAILURES
HARDWARE STSTEM
FAILUFRE RATE! 0,010

AVERAGE AVAILAEKILITY

REFAIF T I ] E
FATE 100.0 250.,0 00,0 1000.0 2000,0
0.01 0.,709261 0.583529 0.,529082 0.501385 0.487535
0,02 0.762652 0,693831 0.668367 0.655612 0.649235
0.05 0.851105 0,.831405 0.824793 0.821488 0.819835
0,10 0.910000 0.904000 0.,902000 0,9201000 0.9200500
0,20 0.950139 0.948476 0.947922 0,947645 0.947507
0.30 0.965561 0.964796 0.964541 0.964413 0.964349
0,50 0.978733 0.978450 0.978355 0,978308 0.978284
0.75 0.985615 0.985487 0.985444 0,985423 0.985412
1,00 0.989132 0.989059 0.989035 0.989023 0.989017
1.50 0.992701 0.9926469 0.992658 0,992652 0.992650
2,00 0.994506 0.,994487 0.994481 0.994478 0.994477
3,00 0.996324 0.996315 0.996313 0,996311 0.996311
4,00 0.997238 0,997233 0.997231 0.,997231 0.997230
EXFECTED HUMEER OF HARDWARE FAILURES

0,01 0.70923 1.4588 2.6454 5.0139 ?.7507
0.02 0.7627 1.7346 3.3418 6.5561 12.9847
0,05 0.8511 2,078% 44,1240 8.2149 163967
0.10 0.92100 2.2600 44,5100 9?.0100 18.0100
0,20 0,9501 2.3712 4.73%946 P.47635 18,9501
0,30 0.9656 2.4120 4.8227 ?.6441 19.2870
0.50 0.9787 2.4461 4,.8918 ?.7831 19.5657
0.75 0.9856 2.4637 4,9272 9?.8542 19.7082
1,00 0.9891 2.4726 4.,9452 ?.8902 19.7803
1.50 0.9927 2.4817 4,9633 Q.92265 19.8530
2,00 0.9945 2.4862 44,9724 ?.9448 19.8895
3,00 0.,9963 2.4908 4.9816 ?.9631 19.9262

4,00 0.9972 2,4931 4,.9862 ?2.9723 19.9444 S

@

T

)
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REFAIR

RATE

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2,00
3.00
4.00

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2.00
3.00
4.00

EXFECTED TOTAL COST FEFR UMIT TIME
HAKDWARE SYSTEM

TARLE A3.2

FAILUKE RATE} 0.010

CH1=10y, CH2a10,
T b 4 ™ E
100.0 250.0 500,0
3.0783 4.3231 4.8621
2.6497 3,3311 3.5832
2.0741 2.2691 2.3345
1.9910 2.0504 2,0702
2.5936 2.6101 2.6156
3.4409 3.4485 3.4510
5.3105 5.3133 5.3143
7.7424 7.7437 7.7441
10,2076 10,2083 10.2086
15,1723 15,1726 15,1727
20.1544 20.1546 20.1544
30,1364 30.1365 30.1365
40.1273 40,1274 40,1274

CH1=100, CH2=10,
3.7167 4,8482 5.3383
3.3361 3.9555 4.1847
2.8401 3.0174 3.0769
2.8100 2.8640 2.8820
3.4488 3.4637 3.4687
4.3099 4.3148 4.3191
6.1914 6.1940 6.1948
8.6295 846306 8.6310
11.0978  11.0985 11,0987
16,0657 16,0660 16,0661
21,0494 21,0496 21,0497
31,0331 31,0332 31,0332
41,0249 41,0249 41,0249
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aND  CH3=10

1000.0

9.1363
3.7094
2.3673
2.0801
2.6183
3.4523
S.3147
7+7443
10,2087
15.1727
20,1547
30,1365
40,1274

CHI=10

S5.5875
4.2995
3.1066
2.8910
3.4712
4,3203
6.1952
8.6312
11.0988
16.0661
21,0497
31,0332
41,0249

2000.0

5.2734
3.7726
2.3836
2.0850
2.6197
3.4529
5.3150
7:7444
10.2087
15.1728
20.1547
3041365
40.1274

5.7122
4,3569
3.1215
2.8955
3.4724
4.3209
641954
8.6313
11.0988
16,0662
21,0497
31,0332
41,0249

- e ——




At M e

REFPAIR
RATE

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2,00
3.00
4.00

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2.00
3.00
4,00

PRIy

EXFECTED

TAERLE A3.2
(CONTINUED)

TOTAL COST FER UMIT TIME
HARDWARE SYSTEM

FAILURE RATES 0,010

CH1=10y CH2=10,
T I M
100.0 250,0 500.0
29,2448 41.8055 47,2447
24,0111 30,8863 33,4301
15,4747 17.4426 18,1031
10.0910 10,6904 10.8902
7.0812 7.2472 7.3025
6.5404 6.6169 6.6424
7.2245 7.2529 7.2623
9.0371 9.0499 ?.0541
11.1857 11,1930 11,1954
15.8292 15.8324 15.8335
20.6489 20.6507 20,6513
30,4673 30.4681 30.4684
40,3760 40,3764 40,3766
CH1=10y CH2=100y AM
3.9783 5.2231 5.7621
4,4497 S5.1311 5.3832
6.5741 6.7691 6.8345
10.9910 11,0504 11,0702
20,5936 20,6101 20,6156
30,4409 30.4485 30,4510
$50.3105 50.3133 50,3143
75.2424 75.2437 75.2441
100.2076 100.2083 100.2086
15¢,1723 150.1726 150.1727
200.1544 200.1546 200.,1546
300.1364 300.1365 300.,1365
400.1273 400.,1274 400,1274
A-48

AND CH3=100

1000.0

50.0116
34.7043
18,4334
10.9901
743302
66551
7.2670
?.0563
11.1966
15.8340
20,6516
30,4685
40,3767

CH3=10

6.0363
5.95094
6.8673
11,0801
20.6183
30,4523
50.3147
75.2443
100,2087
150.1727
200.1547
300.1365
400.1274

2000.0

51.3953
35.3415
18.5985
11.0401
7+.3441
6.6615
7 .2694
?.0573
11,1972
15.8343
20.6518
30.4686
40.3767

6.1734
5.5726
6.8836
11.0851
20,6197
30.4529
50.3150
75.2444
100.2087
150.1728
200.1547
300.1365
400.1274
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Plots of Ahav(t) for 8 = .01, .05, and 0.10 versus
Y are shown in Figure A3.1. As expected, the average
availability improves with y as well as with an improve-
ment in the failure rate, i.e., as B goes from 0.10 to 0.0l.
Costs per unit times for various t are shown in
=10, € = 100

Figure A3.2 for 8 = .01, ¢, = 10, €

h h, hj

as a function of y and clearly show the convexity of the
cost function. A similar pattern is seen in Figure A3.3
which gives the plots of Ch(t)/t for the four sets of

cost factors at time t = 500 and 8 = .0l.
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Figure A3.1l. Average Availability vs. Repair Rate
for Different Failure Rates. (t = 500)
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A3.2 Operational Cost Model: Software System ’ "5'3

Consider a system consisting of software only. At 5

time zero it is operational with N errors in the system. S 3

. A failure occurs at a random time, Ty, whose distribution ]

is given by Equation A2.2 with parameter AN. A repair is
Si undertaken and with probability Pg the error causing the

: failure is removed in a time Wy whose distribution is expo-~
nential with parameter uy (see Equation A2.4.) The next

H@ cycle starts with (N-1) errors in the system and the

failure distribution is now exponential with a parameter

g? (N-1)A. If the error is not removed, which happens with

- probability 9 = 1l - Py the distribution of time to next
failure is again exponential with parameter XN. A similar
behavior is observed throughout the entire life cycle of
the software system with i(0 < i < N) remaining errors.
Note that the model is similar to the Imperfect Maintenance

Model (IMM) of Okumoto and Goel (1978).

A diagrammatic representation of the behavior of the
software system is shown in Figure A3.H4.

As discussed in Section A3.1, for a hardware systenm,

the cost elements associated with the failure-repair cycles R 2
of the software system are K
c, = cost of a software failure, . :Aff

1 R
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cg_ = cost incurred per repair per unit time,
2

and Cg_ = cost of system down time per unit time.
3

Then, the expected total operational cost by time t is given

by
t
Cs(t) = cg Ms(t) + ¢ ut+cs I{l- As(x)} dx (A3.9)
1 2 30
where
Ms(t) = expected number of software failures by time t,
As(t) = availability of the software system at time t.

To get the expression for Ms(t) and As(t), we first
give the Laplace-Stieltjes transforms of the appropriate
quantities as follows.

Let GN,i(t) be the distribution function of the first
passage time from state N to state i. By considering the

renewal equation associated with this, the Laplace-Stieltjes

transform of Gy ,(t) is obtained as ]

’
0

- N P AU, .

Gy,if8) = T = =1 J - (A3.10) .

j=i+ + Hul) 4+ TR RoE
Jirl s+ sOrghug) + PAyuy S 2

- RS

Similarly, the L-S transforms of Ms(t) and As(t) are given o
by f,]
R
- N ki(s + ui) ~ ' w
M (s) = ] — Gy 4 (8) (A3.11) T

f ’
and i
v e
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A e e i e St

N A.(s + p_u.) -
_ i s'i
A (s) = £ 1-— )GN,i(s)

(A3.12)

where EN'N(S) = 1.

Unlike the hardware system discussed in the previous
Section, the results for Ms(t) and As(t) cannot be obtained
in a closed form, but can be derived from Equations (A3.11)
and (A3.12) by using Lemmas A2.1l, A2.2, and A2.3 as follows.

First we obtain the inverse Laplace-Stieltjes trans-

form for Equation (A3.10). We write

- N P_A:l.
GN i(s) = 1 (s + x s)%§J+ X )
’ j=i+l 1,3 2,3
Let Xy 541 = X1v X3, 541 T Xor X j42 T X3r Xp 55 = X4
e ooy XZ’N = XKi, Where Ki = (N-i) X 2'
and let
N
N
U, = I AU
. j=i+1ps 33

as given in Equation (A2.33)

By Lemmas A2.1-A2.3

K. ( R P_A_u,.) -x.t
ZJ. x=i+l s 'k"k (e B
G K. - X.
I=1 T (-x. + X,) )
L=1 J
j#L

9]

o~

ot
]

n
a
t~
)
)
[}
>

A-56




Similarly, we get

Ms(s)

iz1 (s + xl'i)(s + x, )

2,i j=i+l

URTIE
N Ai(s + “i) N (ps Juj)

(s + xl,j)(s + X,

and

N
M_(t) = £ {.z [

or
N N K,
M (t) = z X, Ug {zl(xj + uy) (e

-X.

i=1 *t j=1 K.

i
- %y ) (-xj + %)

2=1
i#L

For the availability, taking the inverse L-S transform

of Equation (A3.12), we have
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N
A_it) = igo {GN,l(t) GN,i-l(t)
- ol g8 -1 (A3.14)
: j=1 ni (-x. + xz)
=1
J#L
For given Cg v Cg v and Cq v the expected total cost
1 2 3

can be obtained from Equation (A3.9) by substituting for
Ms(t) and As(t) from Equations (A3.13) and (A3.14), respec-

tively.

Illustrative Examples

Now we numerically study the behavior of Ms(t),

Asav(t) and Cs(t)/t as a function of the software repair

rate u, failure rate ), and the cost factors Cg v Cg v

S2
and cs3.
Let us consider a system with N = 10, y = 0.05,

and Pg = 0.9. The values of Asav(t) and Ms(t) computed
from the formulae derived earlier in this section are given

in Table 3.3 for various values of y and t. From the

table we note that the average availability improves with -

t as well as with y. The improvement with t is due to the

fact that, as more software errors are removed, the system

fails less often. The improvement with repair rate is due -

to shorter down time.

The expected number of failures increases with t and




.........

2 with u. As the system is used for longer time, more errors

surface resulting in more failures. Also, as u improves,

the system is up for longer periods of time resulting in an;;;i
more software failures. Note that the asymptotic value of - 7'@
Ms(t) is simply the ratio N/ps = 10/.9 = 11.1111. Plots | L ;
of Asav(t) for » = .01, .05, and .10 versus u are shown in ,L;i;
Figure 3.5. As one would expect, availability improves as
U goes up and also as A goes from 0.10 to 0.05 to 0.01.
The expected total cost per unit time Cs(t)/t, is -;w;ﬂ

given in Table A3.4 for X = 0,05, N = 10, Pg = 0.9,

u varying from 0.01 to 4.00, t from 100 to 2000, and the

cost factors varying as follows:

Csl C:s2 Cs

10 10 10

100 10 10
10 10 100
10 100 10

Two additional sets of plots of the cost values .
versus u, taken from the above tables, are shown in

Figures A3.6 and A3.7.
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AVEFRAGE AVAILAEILITY AMD

REFPAIK
RATE

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2.00
3.00
4,00

0.01
0.02
0.05
0.10
0,20
0.30
0.50
0.75
1,00
1.50
2,00
3.00
4,00

-
100.0

0.196539
0.322907
0.548578
0.722236
0.849874
0.898108
0.93815S5
0.958565
0.9468853
0.979190
0.984376
0.989574
0.992176

EMXFECTED

6.6245

8.6796
10,3617
10.8006
10.9340
10.9650
10.9858
10.9949
10.9992
11.0034
11.0054
11.0073
11,0083

TakrLE A3.3

ERFECYTED

HUMEER OF FAILURES

SOF TWARE STSTEM

FAILURE RATE!

AVEFRAGE

250.0

0.215310
0.,424598
0.740689
0.86%9873
0.934920
0.956612
0.973966
0.982644
0.986983
0.991322
0.993491
0.995661
0.99246746

10.1158
11,0015
11.1095
11.1109
11.1110
11.1110
11.1110
11.1110
11.1110
11.1110
11.1111
11.1111
11.1111
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T I M
900.0

0.392714
0.675202
0.867824
0.934912
0.967456
0.,978304
0.986982
0.991322
0.9923491
0.995661
0.996746
0.997830
0.998373

11.0700
11.1106
11.1111
11.1111
11.1111
11.1111
11.1111
1i1.1111
11.1111
i1.1111
11.1111
11.1111
11.1111

0.050

AVAILAEILITY

E
1000.0

0.6748446
0.837280
0.934912
0.967456
0.983728
0.989152
0.993493
0.995661
0.996746
0.997830
0.998373
0.998915
0.999186

11,1109
11,1111

11.1111 -

11.1111
11.1111
11.1111
11.1111
11.1111
11.1111
11,1111
11.1111
11.1111
11.1111

X

2000.0

0.837280
0.918640
0.967456
0.983728
0.991864
0.994576
0.,996746
0.997830
0.998373
0.998915
0.999186
0.,999458
0.999593

MHUMEEFR OF SOFTWARE FAILURES

11,1111
11,1111
11,1111
11.1111
11.1111
11,1111
11.1111
11,1114
11.1111
11,1111
11.1111
11,1111
11,1111
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KEFAIK

RATE

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2,00
3.00
4,00

0.01
0.02
0,05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2,00
3.00
4,00

LSttt

TARLE A3 4

EXFECTED TOTAL COST FER UMIT TIME
SOFTWARE SYSTEM

FAILURE RATE! 0,050
C81=10y CS2x=10, AND CS3I=10
I M E
106.0 250.0 500.0 1000.0
8.7971 8.3515 6.3943 3.4626
7.8389 6.3941 3.6702 1.9383
6.0504 3.5375 2.0240 1.2620
4,8577 2.7457 1.8731 1.4366
4.5947 3.0952 2.5477 2.2738
5.1154 3.8783 3.4392 3.2196
6.7170 S5.7048 5.3524 S5.1762
?.0138 8.1180 7.8090 7.6545
11.4114 10.5746 10,2873 10,1437
16,3084 15,5312 15,2656 15.1328
21,2548 20.5095 20,2548 20.1274
31,2050 30.4878 30.2439 30,1220
41,1791 40.4770 40,2385 40,1192
C$1=100y €CS2=10y ARAND CS83=10
14.7591 11.9932 8.3869 4,4626
15.6505 10,3546 5.6701 2,9383
15.3759 7.5369 4.0240 2.2620
14,5783 6.7456 3.8731 2.4366
14,4352 7.0952 4.5477 3.2738
14.9839 7.8783 5.4392 4,2196
16.6042 9.7048 7.3524 601762
18.9093 12.1180 ?.8090 8.6545
21.3107 14.5744 12,2873 11,1437
26,2115 19.5312 17.26564 16.1328
31.1616 24,5095 22.2548 21.1274
41.1116 34,4878 32.2439 31.1220
51,0865 44,4770 42,238%5 41,1192
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2000.0

1.7828
1,0692
0.8810
1.2183
2.1369
3.1098
S5.0881
7.5773
10.0718
15,0664
20,0637
30,0610
40,0596

2.2828
1.56%92
1.3810
1.7183
2.6369
3.6098
S5.5881
8.0773
10.5718
15.5664
20.5637
30,5610
40.5596




REFAQIR

RATE

0.01
0.02
0.05
0.10
0.20
0.30
0,50
0.75
1.00
1.50
2.00
3,006
4,00

0.01
0.02
0.05
0.10
0.20
0.30
0.50
0.75
1.00
1.50
2.00
3.00
4,00

EXFECTED

TaerLE A3.8
(COMTIMUED)

TOTAL COST FER UNMIT TIME

SOFTWAFRE STYSTEM

FAILURE FRATES 0,050
cs1=10, CS2=10, AHND €$3=100
I
100.0 250.0 - 500.,0 1000.0
81,1085 78.9736 61.0500 3247265
68.7773 98.1803 32,9020 16.5832
46.6783 26.8755 13.7398 7.1199
29.8565 14,4571 7.7310 4.3655
18,1060 8.,9525 5.4766 347383
14,2857 7.7833 5.3718 4.,1959
12,2831 8.0478 645240 5.7620
12,7429 ?.6800 8.5%901 8.0450
14,2146 11,7461 10.8731 10.4366
18.1813 16,3122 15.6561 15,3281
2,6629 21,0953 20.5477 20,2738
32,1434 30.8783 30.4392 30.2196
41.8832 40,7699 40,3849 40,1925
CS1=10, Cs2=100, AND CS3=10
9.6971 9?2515 7.2943 4.3626
?.6389 8.1941 5.4702 3.7383
10.5504 8.0375 6+5240 5.7620
13.8577 11.7457 10.8731 10.4366
22,5947 21,0952 20,5477 20.2738
32,1154 30.8783 30.4392 30,2196
91.7170 50.7048 $0.3524 50.1762
76.5138 75.6180 75.3090 7541545
101.4114 100.5746 100.2873 100.1437
151,.3084 150.5312 150.2656 150.1328
201.2568 200.5095 200.2548 200.1274
301.2050 300.4878 300.2439 300.1220
401.1791 400.4770 400.2385 400.1192
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2000.0

16.4276
8.3916
3.8100
2.6828
2.8692
3.5980
5.3810
77725

10.2183

15.1640

20.1369

30,1098

40.0962

2.6828
2.8692
5.3810
10.2183
20,1369
30.1098
50.0881
75.0773
100.0718
150.0664
200.0637
300.0610
400,0596
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FigureA3.6 shows how the average cost changes with u for
the four sets of cost factors. The minimum for these plots
occurs at different values of yu due to changes in the cost
factors, In Figure A3.7, the average costs are shown for
various time horizons. We note that all the curves follow

a similar pattern, i.e., first decreasing with pand then

increasing.
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Figure A3.5. Average Availability vs. Repair Rate for Different

Failure Rates (t = 500).
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A3.3 Operational Cost Model: Hardware-Software System

We consider a hardware-software system whose behavior
is the same as the system discussed in Section A2.1. Having
discussed the cost models for hardware only and software
only systems in the previous Sections, the operational
cost of the hardware-software system is basically the sum
of both the operational costs. However, the performance
measures required in the hardware-software system are not
obviously equal to their respective sums.

The cost elements associated with the operation of
as defined in Section

this system are €h.’ Sp.’ and ¢

1 B2 hy
A3.l,and ¢c_. , c_ , and c_ , as defined in Section A3.2.
81 83 53
The performance measures required for the cost model
are: Mh(t) and Ms(t), the expected number of hardware
and software failures by time ¢t, respectively, and the

expected total down time during (0,t).

Let C(t) be the expected total overational cost associ-
ated with the hardware-software system and let ¢, = C; =C3-

Then

C(t) = cthh(t) + cg Ms(t) + ¢y Yt + c_ ut

1 2 S2
t v
+ c3I (1 - A(x))dx, (A3.15)
0
A=-67
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where the expressions for M (t), M_(t), and A(.) are

- given in Equations (A2.49), (A2.54), and (A2.43), respec-

! tively.
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Illustrative Examples

Now we numerically study the behavior of Mh(t), Ms(t)'
c(t)/t and Aav(t) as a function of vy and y. The values
of A(x), Aav(t), Ms(t) and Mh(t) are computed from Equa-
tions (A2.43), (A2.44), (A2.45), and (A2.49), respectively.
The values of C(t) are given by Equation (A3.15).

Let us consider a system with N = 10, Pg = .9, P, = .9,
B = .01, and X = .05, For £t = 100, v = .02 to 1.0
and 4 = 0.01 to 0.50, the values of Aav(t), Ms(t) and
Mh(t) are given in Table A3.5. We note that the average
availability improves with both the hardware and the soft-
ware repair rates. Also, the expected number of failures
increases with increase in y and y. This is because of
the increased amount of time that the system is up leading
to a longer time available for the failures to occur.
Note that for these data sets all software errors have been
removed by approximately t = 500. As pointed out earlier,
after this happens, the system behaves as a hardware only
system. To see how C(t)/t behaves as a function of y and

v, let us suppose that cg = 10, Ch. = 10, cg = 10, ¢y =

1 1 2 2

10, c = 10, and t = 100 to 2000 as shown in Table

sy chs
A3.9. As can be easily seen, the cost varies with both ¥y
and 1. As an example, for t = 500, u = 0.10, C(t)/t

goes from 5.97 to 12.23 as y goes from 0.02 to 1.00. The
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minimum seems to occur around y = 0.10. Similarly, for
Yy = 0.10, t = 500, Cs(t) goes from 9.07 to 7.63 as u goes
from 0.01 to 0.50 with the minimum occurring at around

p = 0.10. A similar behavior is seen for other t values.
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TABLE A3.9

EXPECTED TOTAL COST PER UNIT TIME
HARDWARE-SOF TWARE SYSTEM

€CS1=10y CH1=10y €S2=10y CH2=10, CS3=CHI=10

t = 100

SOF TWARE
REPAIR HARDWARE REFAIR RATE
RATE 0.02 0.05 0.10 0.20 0.50 1.00

0.01 ?.13 ?.40 ?.87 10.86 13.85 18.84
0.05 7.07 7.11 7.42 8.29 11,20 16.16
0.10 6.42 6.27 6.46 7.24 10.08 15.02
0.25 6.94 6.59 6.65 7.33 10.10 15.01
0.50 ?.07 8.64 8.64 ?2.28 12,03 16.93

t = 500

0.01 ?.14 8.88 ?.07 9.88 12.75 17.70
0.05 S5.97 4,68 4.39 4,92 7.60 12.49

0.10  5.97 4.55 4.19 4.68 7.34 12,23 B

0.25  7.17  5.67  5.27 5.74 8.39 13.27 A

0,50  9.57 8.04 7.63 8.09 10.74 15.61 o

r @

t = 1000 DS |

0,01  9.31  7.88  7.54 8,05 10.72 15.60 =

0.05 7.06 4,90 4,22 4.53 7.07 11,91 .

0.10 7.22 4.98 4.26 4.54 7.07 11,90 7 el
0,25 8,52 622  5.48 5.74 8.26 13.09 |

0.50 10.96 8464 7.88 8.15 10.66 15.49 S

: >

t = 2000 .

0,01 8.61 6.37  S.66 5.96 8.50 13.34 -

0,05  7.51 4,86  3.96  4.15  6.62 11,43 T

0.50 11,67 8.93 7.99 8415 10.60 15.41 S

) "‘.“.1
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Hardware Repair Rate, Y

Contours of Average Availability vs.
Repair Rates: Hardware-Software System
(B = .01, x = .05, t = 500).
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